

Phase 2 Environmental Site Assessment, Parcel 14

Prepared for: Hydro Aluminium Kurri Kurri Pty Ltd

> Prepared by: ENVIRON Australia Pty Ltd

> > Date: April 2015

Project Number: AS130348

Prepared by:		Authorised by:	
Name:	Kirsty Greenfield	Name:	Fiona Robinson
Title:	Environmental Scientist	Title:	Manager - Hunter
Phone:	02 4962 5444	Phone:	02 4962 5444
Email:	kgreenfield@environcorp.com	Email:	frobinson@environcorp.com
Signature:	KGreenfild Date:21/4/15	Signature:	Jegsburg Date:21/4/15

This document is issued in confidence to Hydro Aluminium Kurri Kurri Australia Pty Ltd for the purposes of a Phase 2 Environmental Site Assessment. It should not be used for any other purpose. The scope of the Phase 2 Environmental Site Assessment was based on ENVIRON's proposal dated 19 September 2013.

The report must not be reproduced in whole or in part except with the prior consent of ENVIRON Australia Pty Ltd and subject to inclusion of an acknowledgement of the source. No responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties. This report does not purport to give legal advice. Legal advice can only be given by qualified legal practitioners.

Whilst reasonable attempts have been made to ensure that the contents of this report are accurate and complete at the time of writing, ENVIRON Australia Pty Ltd disclaims any responsibility for loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this report.

Specific assumptions and limitations identified by ENVIRON as being relevant are set out in the report. The methodology adopted and sources of information used by ENVIRON are outlined in our scope of work. ENVIRON has made no independent verification of this information beyond the agreed scope of works.

This report should be read in full.

© ENVIRON Australia Pty Ltd

Document File Name	Date Issued	Version	Author	Reviewer
AS130348 Parcel14_Phase 2_D1	August 2014	Draft 1	K Greenfield	F Robinson
AS130348 Parcel14_Phase	April 2015	Final	K Greenfield	F Robinson
2_FINAL				
AS130348 Parcel14_Phase	April 2015	Final	K Greenfield	F Robinson
2_Final for Rezoning				

VERSION CONTROL RECORD

i

Contents

		Page
1	Introduction	3
1.1	Background	3
1.2	Objectives and Scope of Work	3
2	Site Description	5
2.1	Site Location	5
2.2	Site Setting	5
2.2.1	Topography	5
2.2.2	Regional Geology	6
2.2.3	Site Hydrology	6
2.2.4	Regional Hydrogeology	6
2.3	Site Sensitivity	7
3	Site History	8
4	Sampling and Analytical Quality Plan	8
4.1	Potential Areas and Contaminants of Concern	8
4.2	Data Quality Objectives and Data Quality Indicators	9
4.3	Sampling Design	9
4.3.1	Fluoride	9
4.3.2	Asbestos	9
4.3.1	Potential Fill	10
5	Basis of Assessment Criteria	Error! Bookmark not defined.
5.1	Soil	Error! Bookmark not defined.
6	Results	15
6.1	Site Walkover	15
6.2	Soil Investigations	15
6.2.1	Fluoride and Asbestos	15
6.2.1	Potential Fill	16
6.3	Soil Results	16
6.4	Quality Assurance/ Quality Control	17
7	Site Characterisation	18
7.1	Conceptual Site Model	18
8	Conclusions and Recommendations	19
9	References	21
10	Limitations	22
10.1	User Reliance	22

List of Figures

Figure 1:	Site Location Plan
Figure 2:	Location of Parcel 14 on the Masterplan
Figure 3:	Site Layout and Surface Soil Sampling Locations

List of Tables

Table 1:	Lot and Development Plans for Parcel 14
Table 2:	Soil Assessment Criteria (mg/kg) – Health and Ecological Investigation
	Levels
Table 3:	Soil Assessment Criteria for Vapour Intrusion - HSL A & HSL B (mg/kg) -
	Sand
Table 4:	ESLs and Management Limits for Petroleum Hydrocarbons in Soil
Table 5:	Site Specific Soil Assessment Criteria for Fluoride
Table 6:	Health Screening Level for Asbestos Contamination in Soil (w/w)
Table 7:	Summary of Soil Results

List of Appendices

Appendix A:	Surrounding Groundwater Bores
Appendix B:	Site Photographs
Appendix C:	Field Investigation Sheets and test pit logs
Appendix D:	Results Tables
Appendix E:	Laboratory Reports
Appendix F:	QA/QC Assessment
Appendix G:	Hazardous Materials Audit

Acronyms and Abbreviations

	Askastas Cantaining Materiala
ACM AHD	Asbestos Containing Materials Australian Height Datum
ALS	Australian Laboratory Services
ANZECC	Australian and New Zealand Environment and Conservation Council
B(a)P	Benzo(a)pyrene
BGL	Below Ground Level
BTEX	Benzene, Toluene, Ethylbenzene & Xylenes (Monocyclic aromatic Hydrocarbons)
CT	Certificate of Title
DEC	NSW Department of Environment and Conservation, now EPA
DP	Deposited Plan
DQI	Data Quality Indicator
DQO	Data Quality Objective
EIL	Ecological Investigation Level
EPA	NSW Environment Protection Authority
ESA	Environmental Site Assessment
F	Fluoride
GMU	Groundwater Management Unit
GPS	Global Positioning System
Ha	Hectare
HIL	Health Investigation Level
HSL	Health Screening Level
HRA	Health Risk Assessment
km	Kilometres
LOR	Limit of Reporting
m	Metres
Mercury	Inorganic mercury unless noted otherwise
Metals	As: Arsenic, Cd: Cadmium, Cr: Chromium, Cu: Copper, Fe: Iron, Ni: Nickel, Pb: Lead, Zn:
ma/ka	Zinc, Hg: Mercury, Se: Selenium
mg/kg	Milligrams per Kilogram Milligrams per Litre
mg/L m AHD	Metres relative to the Australian Height Datum
m BGL	Metres below ground level
m TOC	Metres below top of casing
ML	Megalitre, one million litres
mg/L	Micrograms per Litre
NATA	National Association of Testing Authorities
NC	Not Calculated
ND	Not Detected
NEHF	National Environmental Health Forum
NEPC	National Environment Protection Council
NEPM	National Environment Protection Measure
NHMRC	National Health and Medical Research Council
NSW	New South Wales
n	Number of Samples
OH&S	Occupational Health & Safety
PAH	Polycyclic Aromatic Hydrocarbons
PQL	Practical Quantitation Limit
QA/QC	Quality Assurance/Quality Control
RPD	Relative Percent Difference
TRH	Total Recoverable Hydrocarbons
UCL US EPA	Upper Confidence Limit United States Environment Protection Authority
υς εγα μg/L	Micrograms per Litre
VENM	virgin excavated natural material
	On tables is "not calculated", "no criteria" or "not applicable"
	on ablocito not oaloulatou, no ontona or not applioablo

Executive Summary

This report presents the findings of a Phase 2 Environmental Site Assessment undertaken on part of the Hydro Aluminium Kurri Kurri (Hydro) owned land known as Parcel 14. Parcel 14 is a rural property comprising approximately 12ha and is accessed from Bowditch Avenue, Kurri Kurri and located within the buffer zone and to the north east of the Hydro aluminium smelter. Parcel 14 comprises open farmland with scattered trees. One dwelling is situated on the western boundary in the south western portion of the Parcel 14. A coal railway line also extends along the western boundary.

The objectives of the assessment were to assess the potential for contamination at Parcel 14 based on historical and current landuse and to assess the suitability of Parcel 14 for Low Rural Residential (R2) and environmental conservation (E2) land use.

A Phase 1 Environmental Site Assessment has previously been completed for the Hydro owned lands including Parcel 14 (ENVIRON (22 October 2013) Phase 1 ESA, Hydro Kurri Kurri Aluminium Smelter). The Phase 1 identified that contamination of Parcel 14 may have occurred from dust deposition due to the proximity of the Hydro smelter, illegal dumping due to the remoteness of the area, the construction of dwelling possibly using asbestos containing construction materials, and the activities of the tenant.

To assess the potential contaminants of concern on Parcel 14, a site walkover was completed and surface soil samples were collected on an approximate grid across the parcel.

The site walkover identified concrete footings and hummocky ground associated with at least three former poultry sheds in the southern portion of the parcel, low lying swampy land in the northern portion of the parcel and a dwelling surrounded by waste stockpiles, car bodies and trucks.

The dwellings and associated sheds were assessed separately in a Hazardous Materials Audit, which identified the presence of asbestos containing materials within the building construction materials and the presence of light fittings potentially containing polychlorinated biphenyls (PCBs).

The waste stockpiles included oil drums and a stockpile of asbestos roof sheeting, trucks and car bodies and were located on a portion of Parcel 14 that is leased to a tenant and are considered the responsibility of the tenant.

Intrusive investigations into the footprints of the former poultry sheds identified compacted clay fill material underlain by red/brown clay. No waste materials and no contamination associated with heavy metals, heavy metals, petroleum hydrocarbons (TPH/BTEX), Polycyclic Aromatic Hydrocarbons (PAHs), organochlorine Pesticides (OCPs), organophsphorous pesticides (OPPs) and asbestos were identified within the compacted clay fill material.

Parcel 14 is suitable for Low Rural Residential (R2) and environmental conservation (E2) land use.

ENVIRON makes the following recommendations:

- Once the tenant related issues have been addressed, confirmation of the removal of waste stockpiles should be undertaken via a site walkover.
- The recommendations of the Hazardous Materials Audit should be followed.

1 Introduction

1.1 Background

This report presents the findings of a Phase 2 Environmental Site Assessment undertaken on part of the Hydro Aluminium Kurri Kurri Pty Limited (Hydro) owned land known as Parcel 14. Parcel 14 is located off Bowditch Avenue, Loxford, New South Wales (2326). The location of Parcel 14 is shown in **Figure 1**.

The work has been performed at the request of Hydro Aluminium Kurri Kurri Pty Limited (the "Client").

Hydro is currently evaluating options for the divestment of land parcels for a range of land uses following the closure of the site in May 2014. A Rezoning Masterplan has been developed that identifies Parcel 14 to comprise land suitable for Low Rural Residential (R2) and environmental conservation (E2) land use.

A Phase 1 Environmental Site Assessment has previously been prepared for all Hydro owned lands and evaluated the potential for contamination. The Phase 1 identified that contamination of Parcel 14 may have occurred from dust deposition due to the proximity of the Hydro smelter and the presence of a dwelling with the potential to contain asbestos.

It is noted that at the time of the fieldwork, this land parcel was named Employment Land Subarea 14 and as such the soil samples reference this name. The name of the land parcel as referenced in this report changed to Parcel 14 following the completion of the Rezoning Masterplan.

The location of Parcel 14 in the context of the Rezoning Masterplan is shown in Figure 2.

1.2 Objectives and Scope of Work

The objectives of the assessment were to assess the potential for contamination at Parcel 14 based on historical and current land use and to assess the suitability of Parcel 14 for the purposes of Low Rural Residential (R2) and environmental conservation (E2) land use. The scope of work performed to meet the objectives comprised:

- A review of available information relating to land use to assess the potential for soil, groundwater or surface water contamination arising from historic and current activities;
- A review of published geological, hydrogeological and hydrological data to establish the environmental setting and sensitivity;
- Field work comprising:
 - Collection of surface soil samples to provide a coarse grid assessment to assess the potential for dust deposition from the smelter operations;
 - A site walkover to evaluate other potential locations of buried waste or illegal dumping.

- Data interpretation including comparison against relevant guidelines and a discussion of the findings in terms of human health and environment risk under the current and future land use scenarios.
- Review of options available for remediation or management to render Parcel 14 suitable for the proposed land use.

2 Site Description

2.1 Site Location

Parcel 14 is owned by Hydro Aluminium Kurri Kurri Pty Limited and is located approximately 35km north west of the city of Newcastle and 150km north of Sydney, in the suburb of Loxford, Kurri Kurri, New South Wales, Australia. Parcel 14 is accessed from Bowditch Avenue. The location of Parcel 14 is shown in **Figure 1**.

Parcel 14 is located within the Buffer Zone of the Hydro Aluminium Kurri Kurri Smelter, to the east of the smelter. The Buffer Zone is an area of land surrounding the smelter that provides a buffer between the smelter and surrounding communities. The site comprises open farmland covered in grasses and other scattered small trees and shrubs. One dwelling is situated on the western boundary in the south western portion of the site. A coal railway line also extends along the western boundary.

Parcel 14 is located within the Cessnock Local Government Area and is zoned RU2 – Rural Landscape under the Cessnock Local Environment Plan.

Parcel 14 is approximately 12 hectares (ha) in area and comprises the lot numbers and deposited plans (DP) listed in **Table 1**:

Table 1: Lot and Deposited Plans for Parcel 14.				
Subarea Lot/ DP Area (ha) Total Area (ha				
Parcel 14	Lot 10 DP553543	12.3	12.3	

Landuses surrounding Parcel 14 are as follows:

- North: A dedicated coal railway line then farmland;
- South: Rural residential properties and bushland;
- East: Farmland and bushland;
- West: A dedicated coal railway line then farmland.

Parcel 14 is approximately 830m to the east of the Smelter boundary.

2.2 Site Setting

2.2.1 Topography

Parcel 14 is located in a low lying area of the Buffer Zone at approximately 12 mAHD. The highest point on the site is the western boundary adjacent to the railway line. The natural topography slopes north east towards a tributary of Swamp Creek located in low lying swampy land on the eastern site boundary.

2.2.2 Regional Geology

According to the review of the regional geology described on the Sydney Basin Geological Sheet, Parcel 14 is underlain by siltstone, marl and minor sandstone from the Permian aged Rutherford Formation (Dalwood Group) in the Sydney Basin.

Undifferentiated Quaternary alluvium occurs on the surface of Parcel 14 associated with surface water bodies. Quaternary sediments which are associated with Swamp Creek (approximately 100m west of Parcel 14) and the Hunter River consist of gravel, sand, silt and clay.

2.2.3 Site Hydrology

Surface water from Parcel 14 discharges primarily via infiltration and overland flow to a tributary of Swamp Creek located on the eastern site boundary. Swamp Creek discharges into Wentworth Swamp immediately north of the site. Wentworth Swamp in turn discharges to the Hunter River approximately 6km northeast of Parcel 14 near Maitland.

The Wentworth Swamp system is within the Fishery Creek Catchment, where declining stream water quality and a reduction in diversity of native plants and animals has occurred due to population growth and development pressures in the last ten years (Hunter-Central Rivers Catchment Management Authority).

2.2.4 Regional Hydrogeology

Regional groundwater is expected to follow topography and flow north towards the surface water bodies that discharge to the Hunter River. Locally, groundwater beneath Parcel 14 is expected to flow east towards a tributary of Swamp Creek, located on the eastern site boundary.

According to the NSW Office of Environment and Heritage (Natural Resource Atlas), there are 21 licensed groundwater abstractions (bores) located within 2km of Parcel 14. The majority of the groundwater bores are located within the aluminium smelter and buffer zone.

Information for 11 bores located in a 1km radius from Parcel 14 has been included in **Appendix A**. The bores are used for monitoring purposes. No further information, such as depth to water or logging information was provided.

The Hunter River Alluvium Groundwater Management Unit (GMU) is an important groundwater resource to the region. Groundwater extraction for irrigation, urban supply, drought supply, stock, domestic and commercial/ industrial use occurs, with volumes in excess of 10,000ML per annum extracted from the Hunter River Alluvium GMU. Aquifer storage and recovery is also an important use of this GMU. It is noted that the Hunter River GMU is not the primary drinking water supply in the region, although the protection of drinking water is a water quality objective for the Hunter River (NSW Water Quality and River Flow Objectives)(www.environment.nsw.gov.au/ieo/Hunter/index.htm).

2.3 Site Sensitivity

The sensitivity of Parcel 14 with respect to surface water and groundwater is considered to be moderate based on the following:

- Surface water and groundwater discharge into a tributary of Swamp Creek located on the eastern site boundary, which discharges to the Hunter River via Swamp Creek and Wentworth Swamp within the Fishery Creek Catchment, approximately 6km northeast of Parcel 14 near Maitland.
- Declining stream water quality and a reduction in diversity of native plants and animals has occurred within the Fishery Creek Catchment and water quality down gradient of Parcel 14 has been impacted by historical coal mining;
- The Hunter River GMU is used for irrigation, urban supply, drought supply, stock, domestic and commercial/ industrial use but it is not the main drinking water supply in the region.

3 Site History

Site history investigations included in the Phase 1 ESA for the Hydro Aluminium Kurri Kurri Smelter, dated 26 August 2013 provided the following historical information about Parcel 14:

- The earliest records (aerial photograph from 1951) shows that Parcel 14 comprised bushland with a dense tree cover at that time.
- A dwelling was constructed on a portion of Lot 10 in DP 553542 in the early 1970s. Historical aerial photographs indicate the dwelling remains as current. Current aerial photographs indicate a large number of vehicles are stored around the dwelling.
- Parcel 14 is located approximately 1km north east of the smelter boundary and may be impacted from smelter dust deposition;
- The remoteness of Parcel 14 and surrounding bushland may also give rise to illegal dumping though it is noted that the Buffer Zone area is fenced and regularly monitored by Hydro personnel.

The location of the farm building is included in Figure 3.

4 Sampling and Analytical Quality Plan

4.1 Potential Areas and Contaminants of Concern

Based on Parcel 14 historical information as discussed in **Section 3**, the following areas of concern were identified:

- Construction of a dwelling.
- Smelter dust deposition.
- Illegal dumping.
- Activities at the dwelling, particularly in relation to the large numbers of vehicles.

Contaminants of concern associated with the presence of the dwelling, smelter stack particulate fallout and the activities of the tenant include the following:

- Asbestos;
- Fluoride;
- Hydrocarbons;
- Pesticides; and
- Heavy metals

4.2 Data Quality Objectives and Data Quality Indicators

Data quality objectives (DQOs) and Data Quality Indicators (DQIs) were developed by ENVIRON using the US EPA seven-step DQO process. Completing the seven-step process helps to define the purpose of the assessment and the type, quality and quantity of data needed to inform decisions relating to the assessment of site contamination.

The seven-step DQO process and DQIs are included in Appendix F.

4.3 Sampling Design

The sampling design was optimised following the development of DQOs and DQIs. The sampling design is outlined below. ENVIRON notes that the historical site activities indicate potential contamination to surface soils only. Where fill was identified during the site walkover, a second round of field investigations was completed to assess subsurface soils. No potential contamination sources to surface water or groundwater have been identified. Where these are identified in soils, analysis of surface or groundwater is undertaken.

4.3.1 Fluoride

To assess the potential for fluoride in soil from dust deposition from the Hydro Aluminium Kurri Kurri Smelter, surface soil samples were collected at a rate of one sample per 5ha.

The sample density is lower than that suggested in Table A of NSW EPA (1995) Contaminated Sites: Sampling Design Guidelines. The density is considered adequate for the purposes of this investigation for the following reasons:

- aerial dust deposition is likely to be relatively consistent over the surface of the parcel and therefore sampling on a low density will allow for identification of whether or not dust deposition is an issue; and
- in the event that elevated or variable fluoride concentrations are identified, additional sampling will be completed.

Samples were collected by trowel from surface soils in a grid pattern across open areas of Parcel 14. Sample locations were logged by GPS.

Soil samples were placed into laboratory-supplied paper bags and stored in an ice-filled cooler for transportation to the laboratory. Soil samples were transported to the laboratory under chain of custody conditions. Intra-laboratory duplicate soil samples were collected at a rate of 10%.

Soil samples were analysed for soluble fluoride, as this is the portion of total fluoride that is available for uptake in receptors including biota, flora, fauna and humans. The laboratory was NATA accredited for the analysis.

4.3.2 Asbestos

To assess the potential for asbestos and other illegally dumped wastes to be present at Parcel 14, a site walkover of accessible areas was completed.

The location and type of dumped wastes were detailed on Field Information Sheets and logged by GPS. Where asbestos was confidently identified by the field personnel, no

sampling was completed. If not, a sample of potential asbestos containing material (ACM) was collected for laboratory analysis. ACM fragments were collected into a zip-lock bag using dedicated disposable gloves.

ACM fragments were analysed for asbestos identification by a laboratory NATA accredited for the analysis.

4.3.1 Potential Fill

The site walkover identified the potential for fill material at Parcel 14 along the southern boundary. As such, a second round of fieldwork was completed to assess the potential fill material and its potential for contamination.

A back hoe was used to excavate three test pits into areas of potential fill identified at Parcel 14. The test pits were logged by an ENVIRON environmental scientist and soil samples were collected for analysis.

Soil samples were collected into laboratory-supplied acid-rinsed glass jars using dedicated disposable gloves. The soil samples were stored in an ice-filled cooler for transportation to the laboratory. Soil samples were transported to the laboratory under chain of custody conditions. Intra-laboratory duplicate soil samples were collected at a rate of 10%.

Soil samples were analysed for a range of potential contaminants, including heavy metals, total recoverable hydrocarbons (TRH), polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), organophosphorous pesticides (OPPs) and asbestos. The laboratory was NATA accredited for the analysis.

5 Basis for Assessment Criteria

5.1 Soil

The criteria proposed for the assessment of soil contamination were sourced from the following references:

• National Environment Protection Council (2013) National Environmental Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1) (NEPM).

The variation to the National Environmental Protection (Assessment of Site Contamination) Measure (NEPM 2013) was approved on 19 June 2013 by the NSWEPA under the *Contaminated Land Management Act 1997*. NEPM (2013) provide revised health-based soil investigation levels (HILs) and ecological-based investigation levels (EILs) for various land uses, as follows:

- HIL A residential with garden/accessible soil (home grown produce <10% fruit and vegetable intake, (no poultry), also includes children day care centres, preschools and primary schools
- HIL B residential with minimal opportunities for soil access includes dwellings with fully and permanently paved yard space such as high-rise buildings and flats
- HIL C public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and footpaths. It does not include undeveloped public open space (such as urban bushland and reserves) which should be subject to a site-specific assessment where appropriate
- HIL D commercial/industrial such as shops, offices, factories and industrial sites.

The NEPM 2013 also introduces health-based and ecological screening levels and management limits for petroleum hydrocarbons (HSLs and ESLs). The levels have been derived from recent assessments that more accurately define the exposure mechanisms and risks from sites contaminated with petroleum hydrocarbons.

The objective of the Phase 2 ESA is to assess soil and surface water contamination at Parcel 14 in relation to risks posed to human health and the environment under the proposed future land use of low rural residential. As such, soil investigation results will be compared against the HIL/HSL A (residential) management limits and the EILs/ESLs (urban residential/public open space).

The HILs are applicable for assessing human health risk via all relevant pathways of exposure. The HILs are generic to all soil types and apply generally to a depth of 3 m below the surface for residential use.

 HSLs for soil vapour intrusion from petroleum hydrocarbons - guidelines that prevent accumulation of vapours at concentrations that may represent a health risk. The HSLs are derived for various depths and are for the same generic land uses as for the HILs. The guidelines are relevant where soils are beneath building or structures such as confined spaces;

- EILs for urban residential/ public open space, applicable for assessing risk to terrestrial ecosystems. EILs depend on specific soil physicochemical properties and generally apply to the top 2 m of soil.
- ESLs for urban residential/ public open space, developed for selected petroleum hydrocarbon compounds and fractions and are applicable for assessing risk to terrestrial ecosystems. These are also generally applicable to the top 2m of soil.
- Management Limits where concentrations above these limits may indicate poor aesthetics, high odour and potentially explosive vapour. Management limits are to be applied after consideration of relevant ESLs and HSLs.

The applicable assessment criteria for heavy metals and PAHs in soil are presented in Table 2:

Table 2: Soil Assessment Criteria (mg/kg)	Soil Assessment Criteria (mg/kg) – Health and Ecological Investigation Levels		
	HIL A	EIL	
Fluoride	Ref Table 5	Ref Table 5	
Carcinogenic PAHs (as BaP TEQ)	3	-	
Total PAHs	300	-	

Table 3: Soil Assessment Criteria for Vapour Intrusion - HSL A & HSL B (mg/kg) - Sand				
	0 to <1m	1m to <2m	2m to <4m	4m+
Toluene	160	220	310	540
Ethylbenzene	55	NL	NL	NL
Xylenes	40	60	95	170
Naphthalene	3	NL	NL	NL
Benzene	0.5	0.5	0.5	0.5
F1 ⁽⁴⁾	45	70	110	200
F2 ⁽⁵⁾	110	240	440	NL

The applicable assessment criteria for petroleum hydrocarbons in soil are presented in Table 3 and Table 4:

1 Land use settings are equivalent to those described in Section 5.1 (above). HSLs for vapour intrusion for high density residential assume residential occupation of the ground floor. If communal car parks or commercial properties occupy the ground floor, HSL D should be used.

2 The soil saturation concentration (Csat) is defined as the soil concentration at which the porewater phase cannot dissolve any more of an individual chemical. The soil vapour that is in equilibrium with the porewater will be at its maximum. If the derived soil HSL exceeds Csat, a soil vapour source concentration for a petroleum mixture could not exceed a level that would result in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'.

3 (For soil texture classification undertaken in accord with AS 1726, the classifications of sand, silt and clay may be applied as coarse, fine with liquid limit <50% and fine with liquid limit>50% respectively, as the underlying properties to develop the HSLs may reasonably be selected to be similar. Where there is uncertainty, either a conservative approach may be adopted or laboratory analysis should be carried out.

4 To obtain F1 subtract the sum of BTEX concentrations from the C6-C10 fraction.

5 To obtain F2 subtract naphthalene from the >C10-C16 fraction.

TPH fraction	Soil texture	ESLs (mg/kg dry soil)	Management Limits ¹ (mg/kg dry soil)	
		Urban residential and public open space	Residential, parkland and public open space	
F1 C6- C10	Fine	180*	800	
F2 >C10-C16	Fine	120*	1000	
F3 >C16-C34	Fine	1300	3500	
F4 >C34-C40	Fine	5600	10000	
Benzene	Fine	65	-	
Toluene	Fine	105	-	
Ethylbenzene	Fine	125	-	
Xylenes	Fine	45	-	
Benzo(a)pyrene	Fine	0.7	-	

Table 4: ESLs and Management Limits for Petroleum Hydrocarbons in Soil

¹ Management limits are applied after consideration of relevant ESLs and HSLs.

 2 Separate management limits for BTEX and naphthalene are not available hence these should not be subtracted from the relevant fractions to obtain F1 and F2.

³ ESLs are of low reliability except where indicated by * which indicates that the ESL is of moderate reliability.

⁴ To obtain F1, subtract the sum of BTEX from C6-C10 fraction and subtract naphthalene from >C10-C16 to obtain F2.

NEPM (2013) do not provide criteria for fluoride in soils in Australia. Therefore, ENVIRON (2013) conducted a preliminary level Human Health Risk Assessment (HRA) specific to fluoride in order to derive a specific preliminary screening level for fluoride for the Hydro Aluminium Kurri Smelter. The screening levels are protective of the range of human receptors and are provided in Table 5:

Table 5: Site Specific Soil Assessment Criteria (mg/kg) for Fluoride			
Preliminary screening levels			
Land Use Preliminary screening level			
Residential - soil	F 440mg/kg		
Recreational - soil	F 1,200mg/kg		
Commercial/ Industrial - soil	F 17,000mg/kg		

Soil investigation results for the samples taken from a grid formation across Parcel 14 have been compared against the residential land use screening level. The fluoride 'residential land use' screening level is considered to be suitably protective of both 'residential' and 'low rural residential' land use because the exposure pathways (including vegetable ingestion) and behavioural assumptions (e.g. soil ingestion rate) for the child are considered to be identical under residential and low rural residential land use scenarios. There is a possibility that the rural residential plots may contain a low density of domestic livestock such as poultry and goats, however there is limited evidence of fluoride accumulation in milk and edible tissues of animals fed high levels of fluorides (ATSDR, 2003; NAS, 1971). Rather, fluoride accumulates primarily (up to approximately 99%) in the skeletal tissues of terrestrial animals that consume fluoride-containing foliage (WHO, 1997; ATSDR, 2003). This assumption is supported by site-specific data collected during the 29th annual cattle survey conducted in March 2012 on cattle located within the site's buffer zone, and surrounding areas (AECOM, 2013). The results of this survey concluded that cattle has had little or no exposure to excess environmental fluoride; skeletal fluoride levels decreased compared to 2012 levels, with all fluoride measurements below the toxic threshold; and all cattle examined were in good health and body condition. Consequently, the residential site-specific fluoride criteria is considered to be suitably protective of rural residential land use that may contain a low density of domestic livestock.

The HSLs for asbestos are applicable for assessing human health risk via the exposure pathway of inhalation of airborne asbestos and are presented in Table 6. The HSLs are generic to all soil types.

Table 6. Health screening levels for asbestos contamination in soil Health						
Screening Level (w/w)						
Form of asbestos	Residential A ¹	Residential B ²	Recreational C ³	Commercial/ Industrial D ⁴		
Bonded ACM	0.01%	0.04%	0.02%	0.05%		
FA and AF ¹ (friable asbestos)	0.001%	0.001%				
All forms of asbestos	No visible asbestos for surface soil					

1. The screening level of 0.001% w/w asbestos in soil for FA and AF (i.e. non-bonded/friable asbestos) only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.

Consistent with the guidance provided in the NEPM, the data was assessed against the above adopted site guidelines by:

- Comparing individual concentrations against the relevant guidelines and if discrete samples are in excess of the relevant guideline then;
- Comparing the 95% upper confidence limit (UCL) of mean against the relevant guideline also ensuring that:
 - the standard deviation of the results is less than 50% of the relevant investigation or screening level, and
 - o no single value exceed 250% of the relevant investigation or screening level.

6 Results

6.1 Site Walkover

A site walkover was completed to identify areas of environmental concern, such as illegally dumped wastes and fill at Parcel 14. The entrance to Parcel 14 is from Bowditch Avenue, which borders the southern boundary. The site comprises one rural residential lot, Lot 10, with one dwelling located near the central western boundary. The remainder of the parcel comprised open farmland with stands of mature trees. Several low lying water bodies, including a dam, are located in the north of the parcel and are associated with Wentworth Swamp, which is located immediately north of Parcel 14.

A driveway extends from the southern boundary along the western boundary to the dwelling. The driveway and area immediately surrounding the dwelling contained numerous trucks and truck bodies and waste stockpiles, including oil drums, asbestos roof sheeting, old car engines, wooden pallets, a television, tyres, 44 gallon drums and steel waste.

It is noted that the dwelling has been assessed separately in a Hazardous Materials Audit which identified the presence of asbestos containing materials within the building construction and the potential for PCBs to be present in light fittings.

The site walkover identified hummocky ground close to the southern boundary, where concrete slabs indicated old foundations for poultry sheds. The hummocky ground appeared to be localised cut to fill to create a level platform for the former poultry sheds. The square concrete foundations, which were 2m by 2m in size, indicated that at least three poultry sheds were located on Parcel 14.

No other signs of disturbed land or of land filling were observed during the walkover.

The locations of hummocky ground identified during the field investigation are shown in **Figure 3**. Photographs are included in **Appendix B**. Field Information Sheets are included in **Appendix C**.

6.2 Soil Investigations

6.2.1 Fluoride and Asbestos

Two surface soil samples were collected from across Parcel 14 to assess the potential for fluoride in soil from dust deposition from the Hydro Aluminium Kurri Kurri Smelter as shown in **Figure 3**. A generalised lithology of the surface soils encountered at Parcel 14 is as follows:

• Topsoil: Sandy silt, brown, moist.

One fragment of asbestos containing material (ACM) was collected from a stockpile of roof sheeting located to the north of the dwelling. This fragment was collected into a zip-lock plastic bag using dedicated disposable gloves for asbestos analysis.

6.2.1 Potential Fill

Three test pits were excavated in areas of potential fill, as shown in **Figure 3**. In general, the test pits identified compacted clay fill to a maximum depth of 2.0m bgs. The fill material was underlain by residual red/ brown high plasticity clay.

Three soil samples were collected from the test pits for analysis. These three samples were analysed for asbestos, heavy metals, total petroleum hydrocarbons (TPH), benzene, toluene, ethyl benzene and xylene (BTEX), polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs) and organophosphorous pesticides (OPPs).

The location of the test pits are shown in Figure 3. Test pit logs are included in Appendix C.

6.3 Soil Results

A summary of the soil analytical results are presented in **Table 7**. Soil analytical results are presented in **Appendix D** and laboratory reports are included in **Appendix E**.

Table 7: Summary of Soil Results						
Analyte	No. of Samples	Maximum Concentration (mg/kg)	No. exceeding Site Criteria	Criteria Exceeded (mg/kg)		
Fluoride	2	17	0	-		
Arsenic	3	7	0	-		
Cadmium	3	<1	0	-		
Chromium	3	17	0	-		
Copper	3	<5	0	-		
Lead	3	15	0	-		
Nickel	3	2	0	-		
Zinc	3	6	0	-		
Mercury	3	<0.1	0	-		
BaP TEQ	3	<0.5	0	-		
Total PAHs	3	<0.5	0	-		
Benzene	3	<0.2	0	-		
Toluene	3	<0.5	0	-		
Ethyl benzene	3	<0.5	0	-		
Xylene	3	<0.5	0	-		
TRH C6-C10	3	<10	0	-		
TRH >C10-C16	3	<50	0	-		
TRH >C16-C34	3	<100	0	-		
TRH >C34-C40	3	<100	0	-		
OCPs	3	<0.2	0	-		
OPPs	3	<0.2	0	-		
Asbestos	4	1 – Chrysotile and crocidolite	1	Present		

The results of surface soil sampling for fluoride demonstrate that the conditions at Parcel 14 were not impacted by stack particulate fallout from the Hydro aluminium smelter.

The results of the fill sampling indicate that the compacted clay fill is not impacted by contamination associated with heavy metals, TPH, BTEX, PAHs, OCPs, OPPs and asbestos.

Chrysotile and crocidolite asbestos was identified in the ACM fragment collected from the stockpile of roof sheeting located to the north of the dwelling.

6.4 Quality Assurance/ Quality Control

A quality assurance assessment for this report is presented in **Appendix F**. An assessment was made of data completeness, comparability, representativeness, precision and accuracy based on field and laboratory considerations, as outlined in NSW DEC (2006) and NSW EPA (2007) guidelines. Overall it is considered that the completed investigation works and the data are of suitable quality to meet the project objectives.

7 Site Characterisation

7.1 Conceptual Site Model

Parcel 14 consists of cleared land for cattle grazing and comprises low lying swampy land, a farm dam and a dwelling. Parcel 14 is bounded by the a dedicated coal railway line on the western boundary, farm land on the northern boundary and rural land on the eastern and southern boundary, and is located in the east of the Buffer Zone of the Hydro Aluminium Kurri Kurri Smelter.

Parcel 14 has not been affected by dust deposition of fluoride from the Hydro Aluminium Kurri Kurri Smelter, with fluoride concentrations in surface soil below the preliminary screening level for residential landuse. It is noted that there is currently no source of aerial fluoride emissions, as the smelter is in a care and maintenance mode.

Parcel 14 was developed for residential landuse with a single dwelling constructed near the western boundary in the early 1970s. This use remains to the present day. It is noted that there is a range of wastes stored on the land in close proximity to the dwelling, including oil drums, asbestos roof sheeting, old car engines, wooden pallets, a television, tyres, 44 gallon drums and steel. Numerous car bodies and trucks were also parked along the driveway and around the dwelling. Chrysotile and crocidolite asbestos were identified in a fragment of the roof sheeting. The car bodies, trucks and wastes around the dwelling are considered to be the responsibility of the tenant.

The dwellings and associated sheds were assessed separately in a Hazardous Materials Audit, which identified the presence of asbestos containing materials within building construction and the potential for PCBs in light fittings. Recommendations for the appropriate handling of hazardous materials were provided and should be followed.

In addition to the dwelling, the walkover identified concrete footings from at least three poultry sheds near the southern boundary. Hummocky ground was also identified, indicating that cut to fill has likely occurred to create level platforms for the sheds. No construction debris was evident in this area. Intrusive investigations identified compacted clay fill material within the shed footprints to a depth of 2m underlain by red/brown clay. No waste materials were identified within the compacted clay fill material. The timing of the use of this portion of Parcel 14 for poultry farming is unknown.

Concentrations of potential contaminants of concern were not identified at levels that are likely to impact on surface water or groundwater. No analysis of these media is warranted.

8 Conclusions and Recommendations

This report presents the findings of a Phase 2 Environmental Site Assessment undertaken on part of the Hydro Aluminium Kurri Kurri (Hydro) owned land known as Parcel 14. Parcel 14 is a rural property comprising approximately 12ha and is accessed from Bowditch Avenue, Kurri Kurri and located within the buffer zone and to the north east of the Hydro aluminium smelter. Parcel 14 comprises open farmland with scattered trees. One dwelling is situated on the western boundary in the south western portion of the Parcel 14. A coal railway line also extends along the western boundary.

The objectives of the assessment were to assess the potential for contamination at Parcel 14 based on historical and current landuse and to assess the suitability of Parcel 14 for Low Rural Residential (R2) and environmental conservation (E2) land use.

A Phase 1 Environmental Site Assessment has previously been completed for the Hydro owned lands including Parcel 14 (ENVIRON (22 October 2013) Phase 1 ESA, Hydro Kurri Kurri Aluminium Smelter). The Phase 1 identified that contamination of Parcel 14 may have occurred from dust deposition due to the proximity of the Hydro smelter, illegal dumping due to the remoteness of the area, the construction of dwelling possibly using asbestos containing construction materials, and the activities of the tenant.

To assess the potential contaminants of concern on Parcel 14, a site walkover was completed and surface soil samples were collected on an approximate grid across the parcel.

The site walkover identified concrete footings and hummocky ground associated with at least three former poultry sheds in the southern portion of the parcel, low lying swampy land in the northern portion of the parcel and a dwelling surrounded by waste stockpiles, car bodies and trucks.

The dwellings and associated sheds were assessed separately in a Hazardous Materials Audit, which identified the presence of asbestos containing materials within the building construction materials and the presence of light fittings potentially containing polychlorinated biphenyls (PCBs).

The waste stockpiles included oil drums and a stockpile of asbestos roof sheeting, trucks and car bodies and were located on a portion of Parcel 14 that is leased to a tenant and are considered the responsibility of the tenant.

Intrusive investigations into the footprints of the former poultry sheds identified compacted clay fill material underlain by red/brown clay. No waste materials and no contamination associated with heavy metals, heavy metals, petroleum hydrocarbons (TPH/BTEX), Polycyclic Aromatic Hydrocarbons (PAHs), organochlorine Pesticides (OCPs), organophsphorous pesticides (OPPs) and asbestos were identified within the compacted clay fill material.

Parcel 14 is suitable for Low Rural Residential (R2) and environmental conservation (E2) land use.

ENVIRON makes the following recommendations:

- Once the tenant related issues have been addressed, confirmation of the removal of waste stockpiles should be undertaken via a site walkover.
- The recommendations of the Hazardous Materials Audit should be followed.

9 References

AECOM. 2013. Hydro Aluminum – 2012 Annual Environmental Management Review. 2 June 2013;

ANZECC & ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality;

ANZECC & NHMRC (1992) Australian and New Zealand Guidelines for the Assessment and Management of Contaminated Sites;

ENVIRON (2013) Preliminary Screening Level, Health Risk Assessment for Fluoride and Aluminium, Part of the Kurri Kurri Aluminium Smelter, Hart Road, Loxford;

ENVIRON (2013) Phase 1 ESA, Hydro Kurri Kurri Aluminium Smelter;

Hunter Catchment Management Trust (2000) Wallis and Fishery Creeks Total Catchment Management Strategy;

National Academy of Sciences. 1971a. Biologic effects of atmospheric pollutants: Fluorides. Washington, DC: National Academy of Sciences, National Research Council, Committee on Biologic Effects of Atmospheric Pollutants, 239.

National Environment Protection Council (2013) National Environmental Protection (Assessment of Site Contamination) Amendment Measure (NEPM);

NSW DEC (2006) Guidelines for the NSW Site Auditor Scheme (Second Edition);

NSW DEC (2007) Guidelines for the Assessment and Management of Groundwater Contamination.

World Health Organisation (1997) Environmental Health Criteria for Fluorides and Fluorosis. 2nd ed. Internal Technical Report, International Program on Safety, WHO, Geneva.

10 Limitations

ENVIRON Australia prepared this report in accordance with the scope of work as outlined in our proposal to Hydro Aluminium Kurri Kurri Pty Ltd dated 18 September 2013 and in accordance with our understanding and interpretation of current regulatory standards.

A representative program of sampling and laboratory analyses was undertaken as part of this investigation, based on past and present known uses of Parcel 14. While every care has been taken, concentrations of contaminants measured may not be representative of conditions between the locations sampled and investigated. We cannot therefore preclude the presence of materials that may be hazardous.

Site conditions may change over time. This report is based on conditions encountered at Parcel 14 at the time of the report and ENVIRON disclaims responsibility for any changes that may have occurred after this time.

The conclusions presented in this report represent ENVIRON's professional judgment based on information made available during the course of this assignment and are true and correct to the best of ENVIRON's knowledge as at the date of the assessment.

ENVIRON did not independently verify all of the written or oral information provided to ENVIRON during the course of this investigation. While ENVIRON has no reason to doubt the accuracy of the information provided to it, the report is complete and accurate only to the extent that the information provided to ENVIRON was itself complete and accurate.

This report does not purport to give legal advice. This advice can only be given by qualified legal advisors.

10.1 User Reliance

This report has been prepared exclusively for Hydro Aluminium Kurri Kurri Pty Ltd and may not be relied upon by any other person or entity without ENVIRON's express written permission.

Figures

Appendix A

Surrounding Groundwater Bores

Registered groundwater bores in the vicinity of the site

Map created with NSW Natural Resource Atlas - http://www.nratlas.nsw.gov.au Tuesday, April 29, 2014

Copyright © 2014 New South Wales Government. Map has been compiled from various sources and may contain errors or omissions. No representation is made as to its accuracy or suitability.

✔ Runway ✓ Contour ── Background

Print Report

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Monday, January 6, 2014

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079088

Works Details (top)

GROUNDWATER NUMBER GW079088 LIC-NUM **AUTHORISED-PURPOSES** INTENDED-PURPOSES MONITORING BORE WORK-TYPE Bore WORK-STATUS (Unknown) CONSTRUCTION-METHOD (Unknown) **OWNER-TYPE** (Unknown) **COMMENCE-DATE COMPLETION-DATE FINAL-DEPTH (metres) DRILLED-DEPTH (metres) CONTRACTOR-NAME DRILLER-NAME** PROPERTY **GWMA GW-ZONE** STANDING-WATER-LEVEL SALINITY YIELD

Site Details (top)

REGION 20 - HUNTER **RIVER-BASIN AREA-DISTRICT CMA-MAP GRID-ZONE** SCALE **ELEVATION ELEVATION-SOURCE** NORTHING 6371306.00 EASTING 358054.00 LATITUDE 32 47' 13" 151 29' 3" LONGITUDE **GS-MAP**

56

AMG-ZONE COORD-SOURCE REMARK

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

Print Report

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Monday, January 6, 2014

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079090

Works Details (top)

GROUNDWATER NUMBER GW079090 LIC-NUM **AUTHORISED-PURPOSES** INTENDED-PURPOSES MONITORING BORE WORK-TYPE Bore WORK-STATUS (Unknown) CONSTRUCTION-METHOD (Unknown) **OWNER-TYPE** (Unknown) **COMMENCE-DATE COMPLETION-DATE FINAL-DEPTH (metres) DRILLED-DEPTH (metres) CONTRACTOR-NAME DRILLER-NAME** PROPERTY **GWMA GW-ZONE** STANDING-WATER-LEVEL SALINITY YIELD

Site Details (top)

REGION 20 - HUNTER **RIVER-BASIN AREA-DISTRICT CMA-MAP GRID-ZONE** SCALE **ELEVATION ELEVATION-SOURCE** NORTHING 6371368.00 EASTING 358105.00 32 47' 11" LATITUDE LONGITUDE 151 29' 5" **GS-MAP**
AMG-ZONE COORD-SOURCE REMARK

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Monday, January 6, 2014

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079092

Works Details (top)

GROUNDWATER NUMBER GW079092 LIC-NUM **AUTHORISED-PURPOSES** INTENDED-PURPOSES MONITORING BORE WORK-TYPE Bore WORK-STATUS (Unknown) CONSTRUCTION-METHOD (Unknown) **OWNER-TYPE** (Unknown) **COMMENCE-DATE COMPLETION-DATE FINAL-DEPTH (metres) DRILLED-DEPTH (metres) CONTRACTOR-NAME DRILLER-NAME** PROPERTY **GWMA GW-ZONE** STANDING-WATER-LEVEL SALINITY YIELD

Site Details (top)

REGION 20 - HUNTER **RIVER-BASIN AREA-DISTRICT CMA-MAP GRID-ZONE** SCALE **ELEVATION ELEVATION-SOURCE** NORTHING 6371429.00 EASTING 358078.00 LATITUDE 32 47' 9" 151 29' 4" LONGITUDE **GS-MAP**

AMG-ZONE COORD-SOURCE REMARK

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Monday, January 6, 2014

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079093

Works Details (top)

GROUNDWATER NUMBER GW079093 LIC-NUM **AUTHORISED-PURPOSES** INTENDED-PURPOSES MONITORING BORE WORK-TYPE Bore WORK-STATUS (Unknown) CONSTRUCTION-METHOD (Unknown) **OWNER-TYPE** (Unknown) **COMMENCE-DATE COMPLETION-DATE FINAL-DEPTH (metres) DRILLED-DEPTH (metres) CONTRACTOR-NAME DRILLER-NAME** PROPERTY **GWMA GW-ZONE** STANDING-WATER-LEVEL SALINITY YIELD

Site Details (top)

REGION 20 - HUNTER **RIVER-BASIN AREA-DISTRICT CMA-MAP GRID-ZONE** SCALE **ELEVATION ELEVATION-SOURCE** NORTHING 6371460.00 EASTING 358078.00 LATITUDE 32 47' 8" 151 29' 4" LONGITUDE **GS-MAP**

AMG-ZONE COORD-SOURCE REMARK

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Monday, January 6, 2014

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079094

Works Details (top)

GROUNDWATER NUMBER GW079094 LIC-NUM **AUTHORISED-PURPOSES** INTENDED-PURPOSES MONITORING BORE WORK-TYPE Bore WORK-STATUS (Unknown) CONSTRUCTION-METHOD (Unknown) **OWNER-TYPE** (Unknown) **COMMENCE-DATE COMPLETION-DATE FINAL-DEPTH (metres) DRILLED-DEPTH (metres) CONTRACTOR-NAME DRILLER-NAME** PROPERTY **GWMA GW-ZONE** STANDING-WATER-LEVEL SALINITY YIELD

Site Details (top)

REGION 20 - HUNTER **RIVER-BASIN AREA-DISTRICT CMA-MAP GRID-ZONE** SCALE **ELEVATION ELEVATION-SOURCE** NORTHING 6371462.00 EASTING 358234.00 LATITUDE 32 47' 8" 151 29' 10" LONGITUDE **GS-MAP**

AMG-ZONE COORD-SOURCE REMARK

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Monday, January 6, 2014

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079096

Works Details (top)

GROUNDWATER NUMBER GW079096 LIC-NUM **AUTHORISED-PURPOSES** INTENDED-PURPOSES MONITORING BORE WORK-TYPE Bore WORK-STATUS (Unknown) CONSTRUCTION-METHOD (Unknown) **OWNER-TYPE** (Unknown) **COMMENCE-DATE COMPLETION-DATE FINAL-DEPTH (metres) DRILLED-DEPTH (metres) CONTRACTOR-NAME DRILLER-NAME** PROPERTY **GWMA GW-ZONE** STANDING-WATER-LEVEL SALINITY YIELD

Site Details (top)

REGION 20 - HUNTER **RIVER-BASIN AREA-DISTRICT CMA-MAP GRID-ZONE** SCALE **ELEVATION ELEVATION-SOURCE** NORTHING 6371707.00 EASTING 358152.00 LATITUDE 32 47' 0" 151 29' 7" LONGITUDE **GS-MAP**

AMG-ZONE COORD-SOURCE REMARK

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Monday, January 6, 2014

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079097

Works Details (top)

GROUNDWATER NUMBER GW079097 LIC-NUM **AUTHORISED-PURPOSES** INTENDED-PURPOSES MONITORING BORE WORK-TYPE Bore WORK-STATUS (Unknown) CONSTRUCTION-METHOD (Unknown) **OWNER-TYPE** (Unknown) **COMMENCE-DATE COMPLETION-DATE FINAL-DEPTH (metres) DRILLED-DEPTH (metres) CONTRACTOR-NAME DRILLER-NAME** PROPERTY **GWMA GW-ZONE** STANDING-WATER-LEVEL SALINITY YIELD

Site Details (top)

REGION 20 - HUNTER **RIVER-BASIN AREA-DISTRICT CMA-MAP GRID-ZONE** SCALE **ELEVATION ELEVATION-SOURCE** NORTHING 6371679.00 EASTING 358335.00 LATITUDE 32 47' 1" 151 29' 14" LONGITUDE **GS-MAP**

AMG-ZONE COORD-SOURCE REMARK

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Monday, January 6, 2014

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079099

Works Details (top)

GROUNDWATER NUMBER GW079099 LIC-NUM **AUTHORISED-PURPOSES INTENDED-PURPOSES** WORK-TYPE Bore WORK-STATUS (Unknown) CONSTRUCTION-METHOD (Unknown) **OWNER-TYPE** (Unknown) **COMMENCE-DATE COMPLETION-DATE FINAL-DEPTH (metres) DRILLED-DEPTH (metres) CONTRACTOR-NAME DRILLER-NAME** PROPERTY **GWMA GW-ZONE** STANDING-WATER-LEVEL SALINITY YIELD

Site Details (top)

20 - HUNTER REGION **RIVER-BASIN AREA-DISTRICT CMA-MAP GRID-ZONE** SCALE **ELEVATION ELEVATION-SOURCE** NORTHING 6371003.00 358448.00 EASTING LATITUDE 32 47' 23" 151 29' 18" LONGITUDE **GS-MAP**

AMG-ZONE COORD-SOURCE REMARK

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Monday, January 6, 2014

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079101

Works Details (top)

GROUNDWATER NUMBER GW079101 LIC-NUM **AUTHORISED-PURPOSES INTENDED-PURPOSES** WORK-TYPE Bore WORK-STATUS (Unknown) CONSTRUCTION-METHOD (Unknown) **OWNER-TYPE** (Unknown) **COMMENCE-DATE COMPLETION-DATE FINAL-DEPTH (metres) DRILLED-DEPTH (metres) CONTRACTOR-NAME DRILLER-NAME** PROPERTY **GWMA GW-ZONE** STANDING-WATER-LEVEL SALINITY YIELD

Site Details (top)

REGION 20 - HUNTER **RIVER-BASIN AREA-DISTRICT CMA-MAP GRID-ZONE** SCALE **ELEVATION ELEVATION-SOURCE** NORTHING 6371680.00 EASTING 358387.00 LATITUDE 32 47' 1" 151 29' 16" LONGITUDE **GS-MAP**

AMG-ZONE COORD-SOURCE REMARK

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Monday, January 6, 2014

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079102

Works Details (top)

GROUNDWATER NUMBER GW079102 LIC-NUM **AUTHORISED-PURPOSES INTENDED-PURPOSES** WORK-TYPE Bore WORK-STATUS (Unknown) CONSTRUCTION-METHOD (Unknown) **OWNER-TYPE** (Unknown) **COMMENCE-DATE COMPLETION-DATE FINAL-DEPTH (metres) DRILLED-DEPTH (metres) CONTRACTOR-NAME DRILLER-NAME** PROPERTY **GWMA GW-ZONE** STANDING-WATER-LEVEL SALINITY YIELD

Site Details (top)

REGION 20 - HUNTER **RIVER-BASIN AREA-DISTRICT CMA-MAP GRID-ZONE** SCALE **ELEVATION ELEVATION-SOURCE** NORTHING 6371685.00 EASTING 358725.00 LATITUDE 32 47' 1" 151 29' 29" LONGITUDE **GS-MAP**

AMG-ZONE COORD-SOURCE REMARK

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Monday, January 6, 2014

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079103

Works Details (top)

GROUNDWATER NUMBER GW079103 LIC-NUM **AUTHORISED-PURPOSES INTENDED-PURPOSES** WORK-TYPE Bore WORK-STATUS (Unknown) CONSTRUCTION-METHOD (Unknown) **OWNER-TYPE** (Unknown) **COMMENCE-DATE COMPLETION-DATE FINAL-DEPTH (metres) DRILLED-DEPTH (metres) CONTRACTOR-NAME DRILLER-NAME** PROPERTY **GWMA GW-ZONE** STANDING-WATER-LEVEL SALINITY YIELD

Site Details (top)

REGION 20 - HUNTER **RIVER-BASIN AREA-DISTRICT CMA-MAP GRID-ZONE** SCALE **ELEVATION ELEVATION-SOURCE** NORTHING 6371530.00 EASTING 358675.00 LATITUDE 32 47' 6" LONGITUDE 151 29' 27" **GS-MAP**

AMG-ZONE COORD-SOURCE REMARK

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Appendix B Site Photographs

Photo 1: Photograph showing the concrete foundations of the former poultry sheds in the southern portion of Parcel 16, facing east.

Photo 2: Photograph showing hummocky ground associated with the former poultry sheds.

Title:	Phase 2 ESA	Approved:	Project-Nr.:	Date:
Site:	Parcel 14	KG	AS130348	25/8/14
Client:	:: Hydro Aluminium Kurri Kurri		13 🖓	VIRON

Photo 3: Photograph showing the general farm land at Parcel 16.

Photo 4: Photograph showing the general farm land at Parcel 16.

Title:	Phase 2 ESA	Approved:	Project-Nr.:	Date:
Site:	Parcel 14	KG	AS130348	25/8/14
Client:	Hydro Aluminium Kurri Kurri		13 🖓	VIRON

Photo 5: Photograph of low lying swampy land (dry) on the northern portion of Parcel 16, facing north.

Photo 6: Photograph of low lying swampy land (dry) on the northern portion of Parcel 16, facing west.

Title:	Phase 2 ESA	Approved:	Project-Nr.:	Date:
Site:	Parcel 14	KG	AS130348	25/8/14
Client:	t: Hydro Aluminium Kurri Kurri		13 🖓	VIRON

Photo 7: Photograph of the dwelling on Parcel 16, with 44 gallon drums and other wastes in the foreground, facing north.

Photo 8: Photograph of a stockpile of asbestos roof sheeting located north of the dwelling.

Title:	Phase 2 ESA	Approved:	Project-Nr.:	Date:
Site:	Parcel 14	KG	AS130348	25/8/14
Client:	Hydro Aluminium Kurri Kurri		13 🖓	VIRON

Photo 9: Photograph of truck and car bodies located in the vicinity of the dwelling.

Photo 10: Photograph of the general condition of Parcel 16 in close proximity to the dwelling.

Title:	Phase 2 ESA	Approved:	Project-Nr.:	Date:
Site:	Parcel 14	KG	AS130348	25/8/14
Client:	t: Hydro Aluminium Kurri Kurri		13 🖓	VIRON

Appendix C

Test Pit Logs

Site Walkover Checklist

Project No.: ASI30	348	Date and Time: 1/11/13	
		Date and Time: 1/11/13 Weather: Fine, mild.	
		Environ Personnel: SC	
Sieplaseifelien	THE REAL PROPERTY.		
Topography	Generally N->E	Slope,	
Surface Geology			
Fill evident?	Large rect. one on Bunch	the Rel NDOX 20 no ACM of other overfest	
Hummocky ground?			
Structures on site?		20	
Location of structures			
Building materials used in structures			
Asbestos debris on site?			
Location of asbestos debris?			
Volume of asbestos debris?			
Point of Interest		Easting Northing	
Oil Druns/Ruthish pite	on E. driveway leading		
ACM Pile.	/	151 . 49629 32 . 78933	
·			
1. Main and 1 mains			
38-39 - old bailding	F/print? on fill found	est iking west + c/u of slat.	n-E-61
	it gate - up driveway to	te of hause block ~ 0-8 m bigh ye fitm long.	
70-71 house	Jimon give N. gas	184-87 from N.c.N-N.	->5
23-27 Pan From	SEONT E-N	1-W-	Cau
	NW - 5-E-N. 5	having pond. Alam.	
	owgeng	ad	/
Either side of dri	versing old vehiles, engin	us reildrems (some leaking oil.) wood = steel was	ste .
- around house -	- many old vehicles for	nsinos etc.	
	······································	· · · · · · · · · · · · · · · · · · ·	

photos 50/51

ENVIRON

Appendix D

Results Tables

TABLE A: Soil Analytical Results - Grid Sampling

Sample Depth: 0.0m - 0.01m Sampling Date: 1/11/13 Laboratory PQL: 0.5 mg/kg Site Specific HIL - Fluoride: 440mg/kg

	Soluble
Sample Identification	Fluoride
Sample Identification	mg/kg (1:5
	soil:water)
EMP14 - SF1	17
EMP 14 - SF2	17

TABLE B: Soil Analytical Results - Intrusive Investigations

TABLE B: Soil Analytical Sample Identification				uideline			P14 TP1	P14 TP2	P14 TP3
Sample Depth (m)					501		0.3-0.5	0.3-0.5	0.2-0.4
Date	PQL	HIL 'A' ^A	HSL 'A' Sand 0m to 1m	EIL Residential ^B	ESL Residential (Coarse Soil)	Mgt Limits Residential	19/03/2014	19/03/2014	19/03/2014
Sample Profile							FILL	FILL	FILL
Sample collected by							SC	SC	SC
Asbestos									
Asbestos Identification		[1			1	No	No	No
Metals	1	1		ł	l		110	110	110
Arsenic	5	100		100			7	7	<5
Cadmium	1	20					<1	<1	<1
Chromium	2	100		190			17	10	9
Copper	5	6000		60			<5	<5	<5
Nickel	5	400		30			12	12	15
Lead	2	300		1100			2	<2	<2
Zinc	5	7400		70			6	<5	6
Mercury	0.1	10					<0.1	<0.1	<0.1
Polycyclic Aromatic Hydroca	arbons (PAI	H)							
Naphthalene	0.1			170			<0.5	<0.5	<0.5
Acenaphthylene	0.1						<0.5	<0.5	<0.5
Acenaphthene	0.1						<0.5	<0.5	<0.5
Fluorene	0.1						<0.5	<0.5	<0.5
Phenanthrene	0.1						<0.5	<0.5	<0.5
Anthracene	0.1						<0.5	<0.5	<0.5
Fluoranthene	0.1						<0.5	<0.5	<0.5
Pyrene	0.1						<0.5	<0.5	<0.5
Benz(a)anthracene	0.1						<0.5	<0.5	<0.5
Chrysene	0.1						<0.5	<0.5	<0.5
Benzo(b)&(k)fluoranthene	0.2						<0.5	<0.5	<0.5
Benzo(a) pyrene	0.05				0.7		<0.5	<0.5	<0.5
Indeno(1,2,3-c,d)pyrene	0.1						<0.5	<0.5	< 0.5
Dibenz(a,h)anthracene	0.1						<0.5	<0.5	< 0.5
Benzo(g,h,i)perylene	0.1	<u>^</u>					<0.5	<0.5	< 0.5
Benzo(a)pyrene TEQ	0.5	3					<0.5	<0.5	<0.5
Total +ve		300	4.0)		I		<0.5	<0.5	<0.5
Total Recoverable Hydrocar	1	- NEPWI (20		1	400	700	05	05	40
TRH C6 - C10	25		45		180	700	<25	<25	<10
vTPH C6 - C10 less BTEX	25		45		-	-	<25	<25	<10
TRH >C10-C16	50		110		120	1000	<50	<50	170
TRH >C16-C34	100		NL		300	2500	<100	<100	1080
TRH >C34-C40	100		NL		2800	10,000	<100	<100	240
BTEX									
Benzene	0.2		0.5		50		<0.2	<0.2	<0.2
Toluene	0.5		160		85		<0.5	<0.5	<0.5
Ethylbenzene	1		35	1	70		<1	<1	<1
m+p-xylene	2		40		105		<2	<2	<2
			-		105				
o-Xylene	1	l	40				<1	<1	<1
OC/ OP Pestcides	1								
Sum of Aldrin + Dieldrin	0.05	6					<0.05	<0.05	<0.05
Sum of DDD + DDT + DDE	0.05	240					<0.05	<0.05	<0.05
Remainder of OCPs	0.05						<0.05	<0.05	<0.05
OPPs	0.05	1	1	1	1		< 0.05	< 0.05	< 0.05

All results are in mg/kg

^A HIL A - Residential landuse

^D EILs represent the most conservative value possible as the lowest value for added contaminant limit (ACL) was used, irrespective of soil properties and ambient background concentration. Results shaded grey are in excess of the investigation criteria.

Benzo(a)pyrene TEQ is indicative of carcinogenic PAHs: the HIL is based on the 8 carcinogenic PAHs and their TEFs (potency relative to B(a)P) adopted by CCME 2008. The B(a)P TEQ is calculated by multiplying the concentration of each carcinogenic PAH in the sample by its B(a)P TEF and summing these products.

0.3-0.5		
		RPD %
S	SC .	
7	0	05
-		25 NC
_		10
-		NC
		8
-	-	NC
-		NC
	-	NC
-	<0.1	NC
	<0.5	NC
		NC
-		NC
		NC
-		NC
-		NC
< 0.5	< 0.5	NC
< 0.5	< 0.5	NC
<0.5	< 0.5	NC
<0.5	< 0.5	NC
<0.5	<0.5	NC
ons (TRH) - I	NEPM (20 ⁻	13)
<25	<25	NC
<25	<25	NC
<50	<50	NC
<100	<100	NC
<100	<100	NC
-	-	NC
-		NC
		NC
-		NC
<1	<1	NC
0.05	0.05	NO
		NC
		NC
< 0.05	< 0.05	NC
	File 7 10 2 12 2 4 10 2 2 2 3 0.12 2	<1

Note all units in mg/kg

BOLD identifies where RPD results

intralaboratory	interlaboratory	1
>50	>60	where both sample results exceed ten x PQL
>75	>85	where both sample results are within 5 to 10 x PQL
>100	>100	where both sample results are within 2 to 5 x PQL
AD>2.5 * PQL		where one or both sample results are <2 x PQL

BOLD identified where blanks >0

Where results are within two of the above ranges the most conservative criteria have been used to assess duplicate performance

Appendix E

Laboratory Reports

CERTIFICATE OF ANALYSIS						
Work Order	ES1324139	Page	: 1 of 3			
Client	: ENVIRON AUSTRALIA PTY LTD	Laboratory	: Environmental Division Sydney			
Contact	: MR STEVE CADMAN	Contact	: Client Services			
Address	: PO BOX 560	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164			
	NORTH SYDNEY NSW, AUSTRALIA 2060					
E-mail	: scadman@environcorp.com	E-mail	: sydney@alsglobal.com			
Telephone	: +61 02 99548114	Telephone	: +61-2-8784 8555			
Facsimile	:	Facsimile	: +61-2-8784 8500			
Project	: HYDRO BUFFER ZONE	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement			
Order number	: AS130348					
C-O-C number	:	Date Samples Received	: 08-NOV-2013			
Sampler	: SC	Issue Date	: 15-NOV-2013			
Site	:					
		No. of samples received	: 3			
Quote number	: SY/285/10	No. of samples analysed	: 3			

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

• Descriptive Results

	NATA Accredited Laboratory 825			indicated below. Electronic signing has been
NATA	Accredited for compliance with ISO/IEC 17025.	carried out in compliance with procedures sp Signatories	Position	Accreditation Category
WORLD RECOGNISED		Ashesh Patel Celine Conceicao Christopher Owler	Inorganic Chemist Senior Spectroscopist Team Leader - Asbestos	Sydney Inorganics Sydney Inorganics Newcastle - Asbestos

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 PHONE +61-2-8784 8555 Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

- EA200 Legend
- EA200 'Am' Amosite (brown asbestos)
- EA200 'Ch' Chrysotile (white asbestos)
- EA200 'Cr' Crocidolite (blue asbestos)
- EA200 'Trace' Asbestos fibres detected by trace analysis per AS4964. The result can be interpreted that the sample contains detectable 'respirable' asbestos fibres
- EA200: 'UMF' Unknown Mineral Fibres. "-" indicates fibres detected may or may not be asbestos fibres. Confirmation by alternative techniques is recommended.
- EA200: Asbestos Identification Samples were analysed by Polarised Light Microscopy including dispersion staining.
- EA200: Negative results for vinyl tiles should be confirmed by an independent analytical technique.

Analytical Results

						1	
Sub-Matrix: SOIL (Matrix: SOIL)		Cli	ent sample ID	EMP14-SF1	EMP14-SF2	EMP14-ID3	
	Cl	ient sampl	ng date / time	01-NOV-2013 15:00	01-NOV-2013 15:00	01-NOV-2013 15:00	
Compound	CAS Number	LOR	Unit	ES1324139-001	ES1324139-002	ES1324139-003	
EA055: Moisture Content							
Moisture Content (dried @ 103°C)		1.0	%	17.0	17.0		
EA200: AS 4964 - 2004 Identification of	of Asbestos in bulk	samples					
Asbestos Detected	1332-21-4	0.1	g/kg			Yes	
Asbestos Type	1332-21-4	0.1				Ch + Cr	
Sample weight (dry)		0.01	g			300	
APPROVED IDENTIFIER:		-				S.SPOONER	
EK040: Fluoride							
Fluoride	16984-48-8	1	mg/kg	4	3		
Analytical Results	i		i		1	1	+
Descriptive Results							
rescriptive results							
Sub-Matrix: SOIL							

Method: Compound	Client sample ID - Client sampling date / time	Analytical Results					
EA200: AS 4964 - 2004 Identification of Asbestos in bulk samples							
EA200: Description EMP14-ID3 - 01-NOV-2013 15:00		One piece of bonded asbestos cement sheeting approximately 280 x 150 x 5 mm.					

QUALITY CONTROL REPORT

Work Order	: ES1324139	Page	: 1 of 4
Client	ENVIRON AUSTRALIA PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR STEVE CADMAN	Contact	: Client Services
Address	: PO BOX 560 NORTH SYDNEY NSW, AUSTRALIA 2060	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail	: scadman@environcorp.com	E-mail	: sydney@alsglobal.com
Telephone	: +61 02 99548114	Telephone	: +61-2-8784 8555
Facsimile	:	Facsimile	: +61-2-8784 8500
Project	: HYDRO BUFFER ZONE	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 08-NOV-2013
Sampler	: SC	Issue Date	: 15-NOV-2013
Order number	: AS130348		
		No. of samples received	: 3
Quote number	: SY/285/10	No. of samples analysed	: 3

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

NATA Accredited Signatories

Laboratory 825 This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out ir compliance with procedures specified in 21 CFR Part 11.

Accredited for	Signatories	Position	Accreditation Category
compliance with ISO/IEC 17025.	Ashesh Patel	Inorganic Chemist	Sydney Inorganics
	Celine Conceicao	Senior Spectroscopist	Sydney Inorganics
	Christopher Owler	Team Leader - Asbestos	Newcastle - Asbestos

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 | PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

 Key :
 Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

 CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

 LOR = Limit of reporting

 RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)		
EA055: Moisture Content (QC Lot: 3154223)											
ES1324139-002	EMP14-SF2	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	17.0	16.8	1.1	0% - 50%		
ES1324140-011	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	11.0	11.0	0.0	0% - 50%		
EK040S: Fluoride So	oluble (QC Lot: 31542	58)									
ES1324139-001	EMP14-SF1	EK040S: Fluoride	16984-48-8	1	mg/kg	4	3	38.7	No Limit		
ES1324140-008	Anonymous	EK040S: Fluoride	16984-48-8	1	mg/kg	2	2	0.0	No Limit		

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL	Method Blank (MB)	Laboratory Control Spike (LCS) Report							
				Report	Spike	Spike Recovery (%) Recover		ery Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EK040S: Fluoride Soluble (QCLot: 3154258)									
EK040S: Fluoride	16984-48-8	1.0	mg/kg	<1	25.0 mg/kg	79.4	69	117	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL	Matrix Spike (MS) Report						
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EK040S: Fluoride S	Soluble (QCLot: 3154258)						
ES1324139-001	EMP14-SF1	EK040S: Fluoride	16984-48-8	25.0 mg/kg	91.0	70	130

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

The quality control term Matrix Spike (MS) and Matrix Spike Duplicate (MSD) refers to intralaboratory split samples spiked with a representative set of target analytes. The purpose of these QC parameters are to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL	Sub-Matrix: SOIL			Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike	Spike Rec	overy (%)	Recovery	Limits (%)	RPD)s (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EK040S: Fluoride S	oluble (QCLot: 3154258)									
ES1324139-001	EMP14-SF1	EK040S: Fluoride	16984-48-8	25.0 mg/kg	91.0		70	130		

	E04004400	_	
Work Order	: ES1324139	Page	: 1 of 5
Client	: ENVIRON AUSTRALIA PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR STEVE CADMAN	Contact	: Client Services
Address	PO BOX 560	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	NORTH SYDNEY NSW, AUSTRALIA 2060		
E-mail	: scadman@environcorp.com	E-mail	: sydney@alsglobal.com
Telephone	: +61 02 99548114	Telephone	: +61-2-8784 8555
Facsimile	:	Facsimile	: +61-2-8784 8500
Project	: HYDRO BUFFER ZONE	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 08-NOV-2013
Sampler	: SC	Issue Date	: 15-NOV-2013
Order number	: AS130348		
		No. of samples received	: 3
Quote number	: SY/285/10	No. of samples analysed	: 3

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 | PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500

Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with recommended holding times (USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL					Evaluation:	× = Holding time	breach ; ✓ = Withir	holding time.
Method			Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content								
Snap Lock Bag (EA055-103) EMP14-SF1,	EMP14-SF2	01-NOV-2013				12-NOV-2013	15-NOV-2013	✓
EA200: AS 4964 - 2004 Identification o	of Asbestos in bulk samples							
Snap Lock Bag (EA200) EMP14-ID3		01-NOV-2013		30-APR-2014		13-NOV-2013	12-MAY-2014	✓
EK040: Fluoride								
Snap Lock Bag (EK040S) EMP14-SF1,	EMP14-SF2	01-NOV-2013	12-NOV-2013	08-NOV-2013	*	14-NOV-2013	10-DEC-2013	1

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluation	: × = Quality Co	ntrol frequency n	ot within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	00	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Fluoride - Soluble	EK040S	2	20	10.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Moisture Content	EA055-103	2	20	10.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Laboratory Control Samples (LCS)							
Fluoride - Soluble	EK040S	1	20	5.0	5.0	\checkmark	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
Fluoride - Soluble	EK040S	1	20	5.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
Fluoride - Soluble	EK040S	1	20	5.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055-103	SOIL	A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method
			is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Asbestos Identification in bulk solids	EA200	SOIL	AS 4964 - 2004 Method for the qualitative identification of asbestos in bulk samples
Fluoride - Soluble	EK040S	SOIL	APHA 21st ed., 4500 FC Soluble Fluoride is determined after a 1:5 soil/water extract using an ion selective
			electrode.
Preparation Methods	Method	Matrix	Method Descriptions
1:5 solid / water leach for soluble	EN34	SOIL	10 g of soil is mixed with 50 mL of distilled water and tumbled end over end for 1 hour. Water soluble salts are
analytes			leached from the soil by the continuous suspension. Samples are settled and the water filtered off for analysis.

Summary of Outliers

Outliers : Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

Matrix: SOIL								
Method	Extraction / Preparation			Analysis				
Container / Client Sample ID(s)	Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days		
					overdue			overdue
EK040: Fluoride								
Snap Lock Bag								
EMP14-SF1,	EMP14-SF2	1	12-NOV-2013	08-NOV-2013	4			

Outliers : Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

• No Quality Control Sample Frequency Outliers exist.

N.

ENGN (2014) ()

Form Page (of 1

CERTIFICATE OF ANALYSIS Page : ES1408819 : 1 of 8 **ENVIRON AUSTRALIA PTY LTD** Laboratory : Environmental Division Sydney Contact STEVE CADMAN : Client Services Eastpoint Complex | Suite 19B, Level 2 50 Glebe Road | PO Box Address 277-289 Woodpark Road Smithfield NSW Australia 2164 435 | The Junction NSW 2291 : scadman@environcorp.com E-mail : sydney@alsglobal.com Telephone +61-2-8784 8555 · ____

Facsimile : +61-2-87	784 8500
Project : HYDRO BUFFER ZONE INVESTIGATION QC Level : NEPM 20	013 Schedule B(3) and ALS QCS3 requirement
Order number : AS130348	
C-O-C number : Date Samples Received : 20-MAR-	-2014
Sampler : KW, SC Issue Date : 29-APR-2	-2014
Site :	
No. of samples received : 4	
Quote number : SY/433/13 No. of samples analysed : 4	

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Work Order

Client

Contact

Address

E-mail

Telephone

- Descriptive Results
- Surrogate Control Limits

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 PHONE +61-2-8784 8555 Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

	NATA Accredited Laboratory 825 Accredited for compliance with	Signatories This document has been electronically compliance with procedures specified in 21 Cl	· · ·	ted below. Electronic signing has been carried out in				
NATA	ISO/IEC 17025.	Signatories	Position	Accreditation Category				
		Ashesh Patel	Inorganic Chemist	Sydney Inorganics				
		Celine Conceicao	Senior Spectroscopist	Sydney Inorganics				
WORLD RECOGNISED ACCREDITATION		Pabi Subba	Senior Organic Chemist	Sydney Organics				
		Shaun Spooner	Asbestos Identifier	Newcastle - Asbestos				
		Wisam Marassa	Inorganics Coordinator	Sydney Inorganics				

Sub-Matrix: SOIL (Matrix: SOIL)		Cli	ent sample ID	P14 TP1 0.3-0.5	P14 TP2 0.3-0.5	P14 TP3 0.2-0.4	QA03	
	Cl	ient sampli	ing date / time	19-MAR-2014 15:00	19-MAR-2014 15:00	19-MAR-2014 15:00	19-MAR-2014 15:00	
Compound	CAS Number	LOR	Unit	ES1408819-001	ES1408819-002	ES1408819-003	ES1408819-004	
EA002 : pH (Soils)								
pH Value		0.1	pH Unit		4.6			
EA055: Moisture Content								
Moisture Content (dried @ 103°C)		1.0	%	10.5	11.4	12.5	11.6	
EA200: AS 4964 - 2004 Identificatio	on of Asbestos in bulk	samples						
Asbestos Detected	1332-21-4	0.1	g/kg	No	No	No	No	
Asbestos Type	1332-21-4	-		-	-	-	-	
Sample weight (dry)		0.01	g	45.4	43.5	35.5	38.7	
APPROVED IDENTIFIER:		-		S.SPOONER	S.SPOONER	S.SPOONER	S.SPOONER	
ED008: Exchangeable Cations								
Exchangeable Calcium		0.1	meq/100g		0.5			
Exchangeable Magnesium		0.1	meq/100g		5.3			
Exchangeable Potassium		0.1	meq/100g		0.2			
Exchangeable Sodium		0.1	meq/100g		2.2			
Cation Exchange Capacity		0.1	meq/100g		8.1			
EG005T: Total Metals by ICP-AES								
Arsenic	7440-38-2	5	mg/kg	7	7	<5	9	
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	
Chromium	7440-47-3	2	mg/kg	17	10	9	11	
Copper	7440-50-8	5	mg/kg	<5	<5	<5	<5	
Lead	7439-92-1	5	mg/kg	12	12	15	13	
Nickel	7440-02-0	2	mg/kg	2	<2	<2	<2	
Zinc	7440-66-6	5	mg/kg	6	<5	6	6	
EG035T: Total Recoverable Mercu	ry by FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	
EP004: Organic Matter								
Organic Matter		0.5	%		<0.5			
Total Organic Carbon		0.5	%		<0.5			
EP068A: Organochlorine Pesticide	s (OC)							
alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	

Page : 4 of 8 Work Order : ES1408819 Client : ENVIRON AUSTRALIA PTY LTD Project : HYDRO BUFFER ZONE INVESTIGATION

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	P14 TP1 0.3-0.5	P14 TP2 0.3-0.5	P14 TP3 0.2-0.4	QA03	
	Cli	ent sampli	ng date / time	19-MAR-2014 15:00	19-MAR-2014 15:00	19-MAR-2014 15:00	19-MAR-2014 15:00	
Compound	CAS Number	LOR	Unit	ES1408819-001	ES1408819-002	ES1408819-003	ES1408819-004	
EP068A: Organochlorine Pesticid	es (OC) - Continued							
Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
[^] Total Chlordane (sum)		0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
↑ Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
[^] Sum of DDD + DDE + DDT		0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
EP068B: Organophosphorus Pest	ticides (OP)							
Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	
Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	
Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	
Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	P14 TP1 0.3-0.5	P14 TP2 0.3-0.5	P14 TP3 0.2-0.4	QA03	
	Cl	ient sampli	ng date / time	19-MAR-2014 15:00	19-MAR-2014 15:00	19-MAR-2014 15:00	19-MAR-2014 15:00	
Compound	CAS Number	LOR	Unit	ES1408819-001	ES1408819-002	ES1408819-003	ES1408819-004	
EP068B: Organophosphorus Pesticio	des (OP) - Continued							
Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	
EP075(SIM)B: Polynuclear Aromatic I	Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Sum of polycyclic aromatic hydrocarbon	IS	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	0.6	0.6	
Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.2	1.2	
EP080/071: Total Petroleum Hydroca	rbons							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	<100	
C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	

Sub-Matrix: SOIL (Matrix: SOIL)		Cli	ent sample ID	P14 TP1 0.3-0.5	P14 TP2 0.3-0.5	P14 TP3 0.2-0.4	QA03	
	Cl	ient sampli	ng date / time	19-MAR-2014 15:00	19-MAR-2014 15:00	19-MAR-2014 15:00	19-MAR-2014 15:00	
Compound	CAS Number	LOR	Unit	ES1408819-001	ES1408819-002	ES1408819-003	ES1408819-004	
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3						
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	
C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	
>C10 - C16 Fraction	>C10 C16	50	mg/kg	<50	<50	<50	<50	
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	<100	
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	
C10 - C16 Fraction minus Naphthalene (F2)		50	mg/kg	<50	<50	<50	<50	
EP080: BTEXN							1	
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
[^] Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	
^ Total Xylenes	1330-20-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	
EP068S: Organochlorine Pesticide Su	urrogate							
Dibromo-DDE	21655-73-2	0.1	%	120	101	96.0	84.3	
EP068T: Organophosphorus Pesticid	e Surrogate							
DEF	78-48-8	0.1	%	120	82.7	79.4	94.8	
EP075(SIM)S: Phenolic Compound St	urrogates							
Phenol-d6	13127-88-3	0.1	%	99.2	101	98.5	96.7	
2-Chlorophenol-D4	93951-73-6	0.1	%	97.7	98.3	96.6	92.5	
2.4.6-Tribromophenol	118-79-6	0.1	%	65.1	63.0	63.6	67.8	
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.1	%	84.5	85.9	85.2	81.9	
Anthracene-d10	1719-06-8	0.1	%	107	106	104	102	
4-Terphenyl-d14	1718-51-0	0.1	%	76.3	75.0	75.0	76.5	
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.1	%	122	132	128	137	
Toluene-D8	2037-26-5	0.1	%	93.4	108	112	105	
4-Bromofluorobenzene	460-00-4	0.1	%	87.9	104	102	99.0	

Descriptive Results

Sub-Matrix: SOIL

Method: Compound	Client sample ID - Client sampling date / time	Analytical Results
EA200: AS 4964 - 2004 Identification of Asbestos	s in bulk samples	
EA200: Description	P14 TP1 0.3-0.5 - 19-MAR-2014 15:00	Mid red - brown clay soil with grey and red rocks plus a trace of vegetation.
EA200: Description	P14 TP2 0.3-0.5 - 19-MAR-2014 15:00	Mid red - brown clay soil with grey and red rocks plus a trace of vegetation.
EA200: Description	P14 TP3 0.2-0.4 - 19-MAR-2014 15:00	Pale off white clay soil with grey rocks plus a trace of vegetation.
EA200: Description	QA03 - 19-MAR-2014 15:00	Pale brown clay soil with red rocks plus a trace of vegetation.

Surrogate Control Limits

Sub-Matrix: SOIL		Decessor	Limits (%)
Compound	CAS Number	Low	High
EP068S: Organochlorine Pesticide Surrogate	е		
Dibromo-DDE	21655-73-2	49	147
EP068T: Organophosphorus Pesticide Surro	ogate		
DEF	78-48-8	35	143
EP075(SIM)S: Phenolic Compound Surrogat	es		
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	66	122
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	66	128
4-Terphenyl-d14	1718-51-0	65	129
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	72.8	133.2
Toluene-D8	2037-26-5	73.9	132.1
4-Bromofluorobenzene	460-00-4	71.6	130.0

QUALITY CONTROL REPORT

Work Order	: ES1408819	Page	: 1 of 7
Client	: ENVIRON AUSTRALIA PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: STEVE CADMAN	Contact	: Client Services
Address	Eastpoint Complex Suite 19B, Level 2 50 Glebe Road PO Box 435 The Junction NSW 2291	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail	: scadman@environcorp.com	E-mail	: sydney@alsglobal.com
Telephone	·	Telephone	: +61-2-8784 8555
Facsimile	:	Facsimile	: +61-2-8784 8500
Project	: HYDRO BUFFER ZONE INVESTIGATION	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 20-MAR-2014
Sampler	: KW, SC	Issue Date	: 29-APR-2014
Order number	AS130348		
		No. of samples received	: 4
Quote number	: SY/433/13	No. of samples analysed	: 4

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 PHONE +61-2-8784 8555 Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key : Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting RPD = Relative Percentage Difference # = Indicates failed QC

NATA Accredited Signatories

Laboratory 825

7 825 This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

compliance with Image: Compliance with ISO/IEC 17025. Ashesh Patel Inorganic Chemist Sydney Inorganics	
Celine Conceicao Senior Spectroscopist Sydney Inorganics	
Pabi Subba Senior Organic Chemist Sydney Organics	
Shaun Spooner Asbestos Identifier Newcastle - Asbestos	
Wisam Marassa Inorganics Coordinator Sydney Inorganics	

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: SOIL						Laboratory L	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA002 : pH (Soils) ((QC Lot: 3400690)								
ES1408818-002	Anonymous	EA002: pH Value		0.1	pH Unit	4.7	4.4	6.6	0% - 20%
ED008: Exchangeab	le Cations (QC Lot: 340315	5)							
ES1408817-001	Anonymous	ED008: Exchangeable Calcium		0.1	meq/100g	4.8	4.8	0.0	0% - 20%
		ED008: Exchangeable Magnesium		0.1	meq/100g	2.5	2.5	0.0	0% - 20%
		ED008: Exchangeable Potassium		0.1	meq/100g	0.3	0.3	0.0	0% - 20%
		ED008: Exchangeable Sodium		0.1	meq/100g	0.1	0.1	0.0	0% - 20%
		ED008: Cation Exchange Capacity		0.1	meq/100g	7.7	7.7	0.0	0% - 20%
EP004: Organic Mat	ter (QC Lot: 3402744)								
ES1408817-001	Anonymous	EP004: Organic Matter		0.5	%	<0.5	<0.5	0.0	No Limit
		EP004: Total Organic Carbon		0.5	%	<0.5	<0.5	0.0	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report			
				Report	Spike	Spike Recovery (%)	Recovery Limits (
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
ED008: Exchangeable Cations (QCLot: 340315	55)							
ED008: Exchangeable Calcium		0.1	meq/100g	<0.1	1 meq/100g	100	90	128
ED008: Exchangeable Magnesium		0.1	meq/100g	<0.1	1.67 meq/100g	100	86	120
ED008: Exchangeable Potassium		0.1	meq/100g	<0.1	0.51 meq/100g	100	85	135
ED008: Exchangeable Sodium		0.1	meq/100g	<0.1	0.87 meq/100g	100	86	128
ED008: Cation Exchange Capacity		0.1	meq/100g	<0.1				
EG005T: Total Metals by ICP-AES (QCLot: 340	0304)							
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	21.7 mg/kg	114	92	130
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	4.64 mg/kg	108	87	121
EG005T: Chromium	7440-47-3	2	mg/kg	<2	43.9 mg/kg	105	80	136
EG005T: Copper	7440-50-8	5	mg/kg	<5	32.0 mg/kg	112	93	127
EG005T: Lead	7439-92-1	5	mg/kg	<5	40.0 mg/kg	106	86	124
EG005T: Nickel	7440-02-0	2	mg/kg	<2	55.0 mg/kg	109	93	131
EG005T: Zinc	7440-66-6	5	mg/kg	<5	60.8 mg/kg	115	81	133
EG035T: Total Recoverable Mercury by FIMS	(QCLot: 3400305)							
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	2.57 mg/kg	91.1	70	105
EP004: Organic Matter (QCLot: 3402744)								
EP004: Organic Matter		0.5	%	<0.5	4.58 %	94.5	85	105
EP004: Total Organic Carbon		0.5	%	<0.5	2.66 %	94.4	84	106
EP068A: Organochlorine Pesticides (OC) (QCI	Lot: 3399558)							
EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	0.5 mg/kg	88.8	71	113
EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	0.5 mg/kg	93.0	66	122
EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	0.5 mg/kg	92.6	69	119
EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	0.5 mg/kg	89.0	71	115
EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	82.5	65	113
EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	0.5 mg/kg	92.1	68	116
EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	0.5 mg/kg	90.3	68	118
EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	0.5 mg/kg	93.6	68	116
EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	0.5 mg/kg	107	68	120
EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	0.5 mg/kg	90.7	69	119
EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	0.5 mg/kg	93.0	67	121
EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	0.5 mg/kg	90.3	66	118
EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	0.5 mg/kg	93.8	69	117
EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	0.5 mg/kg	96.8	67	123
EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	0.5 mg/kg	93.6	76	120

Page	: 5 of 7
Work Order	: ES1408819
Client	: ENVIRON AUSTRALIA PTY LTD
Project	: HYDRO BUFFER ZONE INVESTIGATION

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP068A: Organochlorine Pesticides (OC) (QCLot: 3399	558) - continued								
EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	0.5 mg/kg	97.4	76	120	
EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	0.5 mg/kg	66.4	57.3	115	
EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	0.5 mg/kg	81.9	60	124	
EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	0.5 mg/kg	95.1	67	127	
EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	0.5 mg/kg	83.1	65	123	
EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	0.5 mg/kg	90.0	65	129	
EP068B: Organophosphorus Pesticides (OP) (QCLot: 3	399558)								
EP068: Dichlorvos	62-73-7	0.05	mg/kg	<0.05	0.5 mg/kg	87.1	56	126	
EP068: Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	84.0	64	128	
EP068: Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	0.5 mg/kg	78.0	54	122	
EP068: Dimethoate	60-51-5	0.05	mg/kg	<0.05	0.5 mg/kg	80.7	64	124	
EP068: Diazinon	333-41-5	0.05	mg/kg	<0.05	0.5 mg/kg	81.5	73	117	
EP068: Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	0.5 mg/kg	90.5	55	119	
EP068: Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	0.5 mg/kg	76.2	69	123	
EP068: Malathion	121-75-5	0.05	mg/kg	<0.05	0.5 mg/kg	87.9	70	120	
EP068: Fenthion	55-38-9	0.05	mg/kg	<0.05	0.5 mg/kg	86.6	71	115	
EP068: Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	0.5 mg/kg	96.5	68	114	
EP068: Parathion	56-38-2	0.2	mg/kg	<0.2	0.5 mg/kg	89.1	68	122	
EP068: Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	0.5 mg/kg	97.6	69	115	
EP068: Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	0.5 mg/kg	86.8	70	118	
EP068: Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	0.5 mg/kg	91.6	68	116	
EP068: Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	0.5 mg/kg	92.1	64	120	
EP068: Prothiofos	34643-46-4	0.05	mg/kg	<0.05	0.5 mg/kg	93.9	68	116	
EP068: Ethion	563-12-2	0.05	mg/kg	<0.05	0.5 mg/kg	91.8	70	118	
EP068: Carbophenothion	786-19-6	0.05	mg/kg	<0.05	0.5 mg/kg	93.1	67	123	
EP068: Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	0.5 mg/kg	62.3	42	126	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QC	Lot: 3399562)								
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	4 mg/kg	91.0	80	124	
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	4 mg/kg	92.9	77	123	
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	4 mg/kg	89.9	79	123	
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	4 mg/kg	93.0	77	123	
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	4 mg/kg	92.2	79	123	
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	4 mg/kg	90.3	79	123	
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	4 mg/kg	93.2	79	123	
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	4 mg/kg	93.9	79	125	
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	4 mg/kg	86.8	73	121	
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	4 mg/kg	91.0	81	123	
EP075(SIM): Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	<0.5	4 mg/kg	85.4	70	118	
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	4 mg/kg	97.3	77	123	

Page	: 6 of 7
Work Order	: ES1408819
Client	: ENVIRON AUSTRALIA PTY LTD
Project	: HYDRO BUFFER ZONE INVESTIGATION

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
EP075(SIM)B: Polynuclear Aromatic Hydrocarb	oons (QCLot: 3399562) - cor	ntinued								
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	4 mg/kg	83.3	76	122		
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	4 mg/kg	82.6	71	113		
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	4 mg/kg	80.9	71.7	113		
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	4 mg/kg	82.8	72.4	114		
EP080/071: Total Petroleum Hydrocarbons(Q0	CLot: 3399559)									
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	90.1	68.4	128		
EP080/071: Total Petroleum Hydrocarbons(Q0	CLot: 3399561)									
EP071: C10 - C14 Fraction		50	mg/kg	<50	200 mg/kg	96.0	71	131		
EP071: C15 - C28 Fraction		100	mg/kg	<100	300 mg/kg	104	74	138		
EP071: C29 - C36 Fraction		100	mg/kg	<100	200 mg/kg	105	64	128		
EP080/071: Total Recoverable Hydrocarbons -	NEPM 2013 (QCLot: 339955	9)								
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	84.5	68.4	128		
EP080/071: Total Recoverable Hydrocarbons -	NEPM 2013 (QCLot: 339956 ⁻	1)								
EP071: >C10 - C16 Fraction	>C10_C16	50	mg/kg	<50	250 mg/kg	96.8	70	130		
EP071: >C16 - C34 Fraction		100	mg/kg	<100	350 mg/kg	106	74	138		
EP071: >C34 - C40 Fraction		100	mg/kg	<100						
		50	mg/kg		150 mg/kg	101	63	131		
EP080: BTEXN (QCLot: 3399559)										
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	86.1	62	116		
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	84.3	62	128		
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	78.7	58	118		
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	79.2	60	120		
	106-42-3									
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	79.7	60	120		
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	91.9	62	138		

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL			Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound CAS	S Number	Concentration	MS	Low	High
EP004: Organic Ma	tter (QCLot: 3402744)						
ES1408817-001	Anonymous	EP004: Organic Matter		4.58 %	104		
		EP004: Total Organic Carbon	-	2.66 %	103		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Page	: 7 of 7
Work Order	: ES1408819
Client	: ENVIRON AUSTRALIA PTY LTD
Project	: HYDRO BUFFER ZONE INVESTIGATION

The quality control term Matrix Spike (MS) and Matrix Spike Duplicate (MSD) refers to intralaboratory split samples spiked with a representative set of target analytes. The purpose of these QC parameters are to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL	Sub-Matrix: SOIL					S) and Matrix Spi	ke Duplicate	(MSD) Repo	rt	
				Spike	Spike Rec	overy (%)	Recovery	Limits (%)	RPD	s (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EP004: Organic Ma	tter (QCLot: 3402744)									
ES1408817-001	Anonymous	EP004: Organic Matter		4.58 %	104					
		EP004: Total Organic Carbon		2.66 %	103					

Work Order	: ES1408819	Page	: 1 of 8
Client	: ENVIRON AUSTRALIA PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: STEVE CADMAN	Contact	: Client Services
Address	Eastpoint Complex Suite 19B, Level 2 50 Glebe Road PO Box 435 The Junction NSW 2291	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail	: scadman@environcorp.com	E-mail	: sydney@alsglobal.com
Telephone	:	Telephone	: +61-2-8784 8555
Facsimile	:	Facsimile	: +61-2-8784 8500
Project	: HYDRO BUFFER ZONE INVESTIGATION	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 20-MAR-2014
Sampler	: KW, SC	Issue Date	: 29-APR-2014
Order number	: AS130348		
		No. of samples received	: 4
Quote number	: SY/433/13	No. of samples analysed	: 4

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 | PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500

Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Analysis Holding Time Compliance

Matrix: SOII

This report summarizes extraction / preparation and analysis times and compares each with recommended holding times (USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation: * = Holding time breach ; \checkmark = Within holding time.

Matrix: SOIL					Evaluation	: × = Holding time	breach ; 🗸 = Withii	n holding tim
Method		Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA002 : pH (Soils)								
Soil Glass Jar - Unpreserved (EA002) P14 TP2 0.3-0.5		19-MAR-2014	22-APR-2014	26-MAR-2014	×	25-MAR-2014	22-APR-2014	~
EA055: Moisture Content								
Soil Glass Jar - Unpreserved (EA055-103) P14 TP1 0.3-0.5, P14 TP3 0.2-0.4,	P14 TP2 0.3-0.5, QA03	19-MAR-2014				25-MAR-2014	02-APR-2014	~
EA200: AS 4964 - 2004 Identification of Asbestos	in bulk samples							
Snap Lock Bag (EA200) P14 TP1 0.3-0.5, P14 TP3 0.2-0.4,	P14 TP2 0.3-0.5, QA03	19-MAR-2014		15-SEP-2014		23-APR-2014	20-OCT-2014	~
ED008: Exchangeable Cations								
Soil Glass Jar - Unpreserved (ED008) P14 TP2 0.3-0.5		19-MAR-2014	24-APR-2014	16-APR-2014	×	26-MAR-2014	16-APR-2014	-
EG005T: Total Metals by ICP-AES								
Soil Glass Jar - Unpreserved (EG005T) P14 TP1 0.3-0.5, P14 TP3 0.2-0.4,	P14 TP2 0.3-0.5, QA03	19-MAR-2014	22-APR-2014	15-SEP-2014	~	22-APR-2014	15-SEP-2014	~
EG035T: Total Recoverable Mercury by FIMS								
Soil Glass Jar - Unpreserved (EG035T) P14 TP1 0.3-0.5, P14 TP3 0.2-0.4,	P14 TP2 0.3-0.5, QA03	19-MAR-2014	22-APR-2014	16-APR-2014	¥	22-APR-2014	16-APR-2014	×
EP004: Organic Matter								
Soil Glass Jar - Unpreserved (EP004) P14 TP2 0.3-0.5		19-MAR-2014	23-APR-2014	16-APR-2014	×	28-MAR-2014	16-APR-2014	~
EP068A: Organochlorine Pesticides (OC)								
Soil Glass Jar - Unpreserved (EP068) P14 TP1 0.3-0.5, P14 TP3 0.2-0.4,	P14 TP2 0.3-0.5, QA03	19-MAR-2014	24-MAR-2014	02-APR-2014	~	19-APR-2014	03-MAY-2014	~
EP068B: Organophosphorus Pesticides (OP)								!
Soil Glass Jar - Unpreserved (EP068) P14 TP1 0.3-0.5.	P14 TP2 0.3-0.5,	19-MAR-2014	24-MAR-2014	02-APR-2014	1	19-APR-2014	03-MAY-2014	1
P14 TP3 0.2-0.4,	QA03				-			•

Page	: 3 of 8
Work Order	: ES1408819
Client	: ENVIRON AUSTRALIA PTY LTD
Project	: HYDRO BUFFER ZONE INVESTIGATION

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withir	n holding time
Method		Sample Date	Ex	traction / Preparation		Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Recoverable Hydrocarbo	ons - NEPM 2013							
Soil Glass Jar - Unpreserved (EP071)								
P14 TP1 0.3-0.5,	P14 TP2 0.3-0.5,	19-MAR-2014	24-MAR-2014	02-APR-2014	1	20-APR-2014	03-MAY-2014	 ✓
P14 TP3 0.2-0.4,	QA03							
EP075(SIM)B: Polynuclear Aromatic Hydro	ocarbons							
Soil Glass Jar - Unpreserved (EP075(SIM))								
P14 TP1 0.3-0.5,	P14 TP2 0.3-0.5,	19-MAR-2014	24-MAR-2014	02-APR-2014	1	19-APR-2014	03-MAY-2014	 ✓
P14 TP3 0.2-0.4,	QA03							
EP080: BTEXN								
Soil Glass Jar - Unpreserved (EP080)								
P14 TP1 0.3-0.5,	P14 TP2 0.3-0.5,	19-MAR-2014	24-MAR-2014	02-APR-2014	1	28-APR-2014	02-APR-2014	*
P14 TP3 0.2-0.4,	QA03							
EP080/071: Total Recoverable Hydrocarbo	ons - NEPM 2013							
Soil Glass Jar - Unpreserved (EP080)								
P14 TP1 0.3-0.5,	P14 TP2 0.3-0.5,	19-MAR-2014	24-MAR-2014	02-APR-2014	1	28-APR-2014	02-APR-2014	3
P14 TP3 0.2-0.4,	QA03							

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluatior	n: × = Quality Co	ntrol frequency r	not within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	00	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Exchangeable Cations with pre-treatment	ED008	1	3	33.3	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Organic Matter	EP004	1	3	33.3	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
pH (1:5)	EA002	1	3	33.3	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Laboratory Control Samples (LCS)							
Exchangeable Cations with pre-treatment	ED008	1	3	33.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Organic Matter	EP004	1	3	33.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PAH/Phenols (SIM)	EP075(SIM)	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Pesticides by GCMS	EP068	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Mercury by FIMS	EG035T	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-AES	EG005T	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TPH - Semivolatile Fraction	EP071	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
Exchangeable Cations with pre-treatment	ED008	1	3	33.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Organic Matter	EP004	1	3	33.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PAH/Phenols (SIM)	EP075(SIM)	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Pesticides by GCMS	EP068	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Mercury by FIMS	EG035T	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-AES	EG005T	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TPH - Semivolatile Fraction	EP071	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
Organic Matter	EP004	1	3	33.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH (1:5)	EA002	SOIL	(APHA 21st ed., 4500H+) pH is determined on soil samples after a 1:5 soil/water leach. This method is compliant with NEPM (2013) Schedule B(3) (Method 103)
Moisture Content	EA055-103	SOIL	A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Asbestos Identification in bulk solids	EA200	SOIL	AS 4964 - 2004 Method for the qualitative identification of asbestos in bulk samples
Exchangeable Cations with pre-treatment	ED008	SOIL	Rayment & Higginson (1992) Method 15A2. Soluble salts are removed from the sample prior to analysis. Cations are exchanged from the sample by contact with Ammonium Chloride. They are then quantitated in the final solution by ICPAES and reported as meq/100g of original soil. This method is compliant with NEPM (2013) Schedule B(3) (Method 301)
Total Metals by ICP-AES	EG005T	SOIL	(APHA 21st ed., 3120; USEPA SW 846 - 6010) (ICPAES) Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	AS 3550, APHA 21st ed., 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Organic Matter	EP004	SOIL	AS1289.4.1.1 - 1997., Dichromate oxidation method after Walkley and Black. This method is compliant with NEPM (2013) Schedule B(3)
Pesticides by GCMS	EP068	SOIL	(USEPA SW 846 - 8270B) Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM (2013) Schedule B(3) (Method 504,505)
TPH - Semivolatile Fraction	EP071	SOIL	(USEPA SW 846 - 8015A) Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C36. This method is compliant with NEPM (2013) Schedule B(3) (Method 506.1)
PAH/Phenols (SIM)	EP075(SIM)	SOIL	(USEPA SW 846 - 8270B) Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 502 and 507)
TPH Volatiles/BTEX	EP080	SOIL	(USEPA SW 846 - 8260B) Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 501)
Preparation Methods	Method	Matrix	Method Descriptions
Exchangeable Cations Preparation Method	ED007PR	SOIL	Rayment & Higginson (1992) method 15A1. A 1M NH4Cl extraction by end over end tumbling at a ratio of 1:20. There is no pretreatment for soluble salts. Extracts can be run by ICP for cations.
1:5 solid / water leach for soluble analytes	EN34	SOIL	10 g of soil is mixed with 50 mL of distilled water and tumbled end over end for 1 hour. Water soluble salts are leached from the soil by the continuous suspension. Samples are settled and the water filtered off for analysis.

Preparation Methods	Method	Matrix	Method Descriptions
Organic Matter	EP004-PR	SOIL	AS1289.4.1.1 - 1997., Dichromate oxidation method after Walkley and Black. This method is compliant with NEPM (2013) Schedule B(3) (Method 105)
Methanolic Extraction of Soils for Purge and Trap	* ORG16	SOIL	(USEPA SW 846 - 5030A) 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids (Option A - Concentrating)	ORG17A	SOIL	In-house, Mechanical agitation (tumbler). 20g of sample, Na2SO4 and surrogate are extracted with 150mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.
Tumbler Extraction of Solids (Option B - Non-concentrating)	ORG17B	SOIL	In-house, Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 20mL 1:1 DCM/Acetone by end over end tumble. The solvent is transferred directly to a GC vial for analysis.

Summary of Outliers

Outliers : Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

Sub-Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Samples Submitted							
EP080S: TPH(V)/BTEX Surrogates	ES1408819-004	QA03	1.2-Dichloroethane-D4	17060-07-0	137 %	72.8-133.2	Recovery greater than upper data
						%	quality objective

Outliers : Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

Matrix: SOIL Method Extraction / Preparation Analysis Date analysed Due for analysis Container / Client Sample ID(s) Date extracted Due for extraction Days Days overdue overdue EA002 : pH (Soils) Soil Glass Jar - Unpreserved P14 TP2 0.3-0.5 26-MAR-2014 22-APR-2014 27 ____ ____ ----ED008: Exchangeable Cations Soil Glass Jar - Unpreserved P14 TP2 0.3-0.5 24-APR-2014 16-APR-2014 8 ----____ EG035T: Total Recoverable Mercury by FIMS Soil Glass Jar - Unpreserved P14 TP1 0.3-0.5, P14 TP2 0.3-0.5, 22-APR-2014 16-APR-2014 6 22-APR-2014 16-APR-2014 6 P14 TP3 0.2-0.4, QA03 EP004: Organic Matter Soil Glass Jar - Unpreserved 23-APR-2014 16-APR-2014 P14 TP2 0.3-0.5 7 ----____ ----EP080/071: Total Petroleum Hydrocarbons Soil Glass Jar - Unpreserved P14 TP1 0.3-0.5, P14 TP2 0.3-0.5. 28-APR-2014 02-APR-2014 26 ------------P14 TP3 0.2-0.4. QA03

Page	: 8 of 8
Work Order	: ES1408819
Client	: ENVIRON AUSTRALIA PTY LTD
Project	HYDRO BUFFER ZONE INVESTIGATION

Matrix: SOIL								
Nethod Sector Sect		E	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days overdue	Date analysed	Due for analysis	Days overdue	
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013								
Soil Glass Jar - Unpreserved								
P14 TP1 0.3-0.5,	P14 TP2 0.3-0.5,				28-APR-2014	02-APR-2014	26	
P14 TP3 0.2-0.4,	QA03							
EP080: BTEXN								
Soil Glass Jar - Unpreserved								
P14 TP1 0.3-0.5,	P14 TP2 0.3-0.5,				28-APR-2014	02-APR-2014	26	
P14 TP3 0.2-0.4,	QA03							

Outliers : Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

• No Quality Control Sample Frequency Outliers exist.

Appendix F QA/QC Assessment

APPENDIX F

DATA QUALITY OBJECTIVES

To ensure that reliable data of adequate type was collected and assessed for the investigation, the seven-step Data Quality Objective (DQO) approach, endorsed in the NSW DEC (2006) Guidelines for the NSW Site Auditor Scheme 2nd Edition, will be adopted. The DQOs set quality assurance and quality control parameters for the field and laboratory programs to ensure data of appropriate reliability will be used to assess the environmental conditions at Parcel 14.

ENVIRON has developed DQOs in accordance with the seven-step process, which is presented below.

Step 1 – State the Problem

Based on the information available from the Phase 1 ESA, uses of Parcel 14 appear to be limited to farmland and one dwelling. This use of Parcel 14 requires confirmation via a site walkover and judgemental sampling. In addition, the potential for fluoride in surface soils from dust deposition from the Hydro smelter requires assessment.

Step 2 – Identification of the Goals (Decisions) of the Study

The following decisions are to be made from this study:

- Are the current and former uses of Parcel 14 consistent with site observations?
- Has Parcel 14 been impacted by fluoride from dust deposition from the Hydro smelter?
- Has Parcel 14 been impacted by other contaminants from historical site use?
- Is Parcel 14 suitable for Low Rural Residential (R2) and environmental conservation (E2) landuse?

Step 3 – Identify Information Inputs to the Decision or Goal of the Study

The inputs required to make the above decisions as listed below:

- A site walkover, including collection of field notes and photographs;
- Results of surface soil samples collected for fluoride analysis;
- Results of other soil samples from fill/ hummocky ground collected for suitable analysis during the site walkover;
- Proposed land use;
- Appropriate NSW contamination guidelines.

Step 4 – Define the Study Boundaries

Spatial boundaries - the study boundaries have been defined as the spatial boundary of Parcel 14, as shown on Figure 1.

Vertical boundaries – as areas of concern at Parcel 14 are restricted to surface soils, the vertical boundary of the study is the top 200mm unless subsurface contamination issues are identified during the site walkover.

Temporal boundaries – the temporal boundary is limited to the data collected during the investigation works.

Constraints within the study boundaries – This investigation does not require investigation of subsurface soils or groundwater impacts to subsurface soils or groundwater are considered likely to have occurred from the historical site activities.

Step 5 – Develop a Decision Rule

The decision rules for this investigation are as follows:

- If it is determined that the data generated through this investigation is reliable for use in producing a site conceptual model and assessing the suitability of Parcel 14 for Low Rural Residential (R2) and environmental conservation (E2) landuse, then an assessment of the suitability of Parcel 14 for Low Rural Residential (R2) and environmental conservation (E2) landuse will be made;
- If it is determined that the data generated through this investigation is not suitable, comprehensive or reliable for use in producing a site conceptual model, then further investigations may be recommended prior to the development of a site conceptual model and assessment of the suitability of Parcel 14 for Low Rural Residential (R2) and environmental conservation (E2) landuse.

Step 6 – Specify Performance or Acceptance Criteria that the Data need to Achieve

Acceptable limits on decision errors have been developed based on the Data Quality Indicators (DQIs) of precision, accuracy, representativeness, comparability and completeness. The DQIs for this investigation are outlined below.

The potential for significant decision errors were minimized by:

- Completion of a QA/QC assessment of the investigation data to assess if the data satisfies the DQIs;
- Assessment of whether appropriate sampling and analytical densities were completed for the purpose of the investigation; and
- Ensuring that the criteria set for the investigation were appropriate for the proposed use of Parcel 14.

Minimization of the potential for significant decision errors limits the potential that a conclusive statement may be incorrect.

Step 7 – Optimisation of the Design of Collection of Data

The collection of data was optimized by the completion of a Phase 1 ESA, data gap review and development of a sampling design, which is included in Section 4.3. Attainment of the DQOs has been assessed by reference to the DQIs, presented below.

DATA QUALITY INDICATORS

The project Data Quality Indicators (DQIs) have been established to set acceptance limits on field and laboratory data collected as part of this investigation. Field and laboratory procedures acceptance limits are set at different levels for different projects and by different laboratories. Non-compliances with acceptance limits are to be documented and discussed in the report. The DQIs are presented in Table A.

Table A: Data Quality Indicators					
DQI	Field	Laboratory	Acceptability Limits		
	All critical locations sampled,	All critical samples analysed and all	As per NEPM (2013)		
	including targeted sampling of	analytes analysed according to			
	areas of environmental concern	Standard Operating Procedures			
	identified during the site walkover.	(SOPs)			
	Fluoride soil sampling completed	Appropriate Practical Quantitation			
S	on a reduced density to identify if	Limits (PQLs)			
Jes	fluoride in surface soils is an	Sample documentation complete			
etei	issue.	Sample holding times complied			
əlqr	All samples collected	with			
Completeness	Experienced sampler				
0	Documentation correct				
	Experienced sampler	Same analytical methods used	As per NEPM (2013)		
>	In the event of multiple sampling	Same PQLs			
oilit	events:	Same units			
Comparability	Same types of samples collected	Same primary and secondary			
edr	Same sampling methodologies	laboratories			
Son	used				
0	Climatic conditions				
e e	Appropriate media sampled	All samples analysed according to			
ive	Relevant media sampled	SOPs			
Represe ntativene ss					
шсо					
	Collection of duplicate samples	Analysis of:			
	Sampling methodologies	Blind duplicate samples at rate of 1	RPD of 30 to 50%		
ion	appropriate and complied with	in 10 samples			
CIS.		Split duplicate samples at rate of 1	RPD of 30 to 50%		
Precision		in 20 samples			
<u>ц</u>		Laboratory duplicate samples	RPD of 30 to 50%		

AS130348
Г

	Sampling methodologies	Analysis of:	
	appropriate and complied with.	Method blanks	Non-detect
		Matrix spikes	70 to 130%
रु		Surrogate spikes	70-130%
Irac		Laboratory control samples	70 to 130%
ccuracy		Reagent blanks	
4		Reference material	

QUALITY ASSURANCE AND QUALITY CONTROL

A quality assurance assessment for this report is presented in Table A and B below. An assessment was made of data completeness, comparability, representativeness, precision and accuracy based on field and laboratory considerations, as outlined in NSW DEC (2006) and NSW EPA (2007) guidelines.

Table A: QA/QC – Sampling and Analysis Methodology Assessment		
Sampling Methodology	ENVIRON Assessment	
Sampling Pattern and Locations	Surface soil sampling was undertaken on a grid pattern across Parcel 14 to assess the impact of particulate fallout from Hydro Aluminium Smelter.	
Sampling Density	Twenty-one soil samples were collected from a grid across the entire site which is approximately 150 ha. The purpose of the sampling was to assess for impacts from smelter particulate fallout and therefore is considered suitable in density and spatial layout.	
Sample depths	Surface soil samples were collected from a grid across Parcel 14 from the soil surface.	
Sample Collection Method	Surface soil samples across Parcel 14 were collected directly from the ground surface using using dedicated disposable gloves and a hand trowel. The hand trowel was brushed clean prior to sample collection. Soil samples were collected into laboratory supplied, acid rinsed glass jars.	
Decontamination Procedures	Surface soil samples across Parcel 14 were collected directly from the ground surface using using dedicated disposable gloves and a hand trowel. The hand trowel was generally used to loosen the soil prior to sampling and was brushed clean between sample locations.	
Sample handling and containers	All soil samples were placed into laboratory-supplied, acid- rinsed glass jars. Soil samples were placed on ice following collection and during transportation to the laboratory.	
Chain of Custody	Samples were transported to the laboratory under chain of custody conditions. The chain of custody forms were signed by the laboratory on receipt of the samples.	
Detailed description of field screening protocols	Field screening for volatiles was not completed during soil sampling as volatile contaminants were not the main chemical of concern.	

Table A: QA/QC – Sampling and Analysis Methodology Assessment		
Sampling Methodology	ENVIRON Assessment	
Calibration of field equipment	No equipment requiring calibration was used.	
Sampling Logs	Field Information Sheets are included in Appendix C.	

Table B: QA/QC – Field and Lab Quality Assurance and Quality Control			
Field and Lab QA/QC	ENVIRON Comments		
Field quality control samples	No intra-laboratory or inter-laboratory duplicate soil samples were collected at Parcel 14. Duplicate samples were collected as part of the overall field program for the buffer zone investigations at a rate of 1:20 at a minimum. No rinsate blank samples were collected.		
Field quality control results	Not applicable.		
NATA registered laboratory and NATA endorsed methods	ALS was the primary laboratory. ALS laboratory certificates are NATA stamped and both labs are accredited for the analyses performed for this assessment.		
Analytical methods	A summary of analytical methods were included in the laboratory test certificates.		
Holding times	Review of the COCs and laboratory certificates indicate that holding times were met.		
Practical Quantitation Limits (PQLs)	PQLs for all soil were below Parcel 14 assessment criteria.		
Laboratory quality control samples	Laboratory quality control samples including duplicates, laboratory control samples, matrix spikes, surrogate spikes and blanks were undertaken by the laboratories at appropriate frequencies.		
Laboratory quality control results	All results for laboratory soil duplicates, laboratory control samples, matrix spikes and surrogates were acceptable and no detections were made in blank samples.		

Overall it is considered that the completed investigation works and the data obtained adequately complied with the requirements of NSW DEC (2006) and NSW EPA (2007) guidelines and that the data is of suitable quality to meet the project objectives.

Appendix G

Hazardous Materials Audit

Hazardous Materials Audit Parcel 14

Prepared for: Hydro Aluminium Kurri Kurri Pty Limited

> Prepared by: ENVIRON Australia Pty Ltd

> > Date: April 2015

Project Number: AS130348

Prepare	d by:	Authorise	ed by:
Name:	Shaun Taylor	Name:	Fiona Robinson
Title:	Senior Environmental Scientist	Title:	Manager, ENVIRON Hunter
Phone:	02 4962 5444	Phone:	02 4962 5444
Email:	staylor@environcorp.com	Email:	frobinson@environcorp.com
Signature:	Date: 20/04/15	Signature:	All former Date: 20/04/15
	\bigcirc		

This document is issued in confidence to Hydro Aluminium Kurri Kurri Pty Limited for the described in Section 1.1 of this report. It should not be used for any other purpose.

The report must not be reproduced in whole or in part except with the prior consent of ENVIRON Australia Pty Ltd and subject to inclusion of an acknowledgement of the source. No information as to the contents or subject matter of this document or any part thereof may be communicated in any manner to any third party without the prior consent of ENVIRON Australia Pty Ltd.

Whilst reasonable attempts have been made to ensure that the contents of this report are accurate and complete at the time of writing, ENVIRON Australia Pty Ltd disclaims any responsibility for loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this report.

© ENVIRON Australia Pty Ltd

Document File Name	Date Issued	Version	Author	Reviewer
Hydro Parcel 14 HMA	20/04/15	Final	S Taylor	F Robinson
Report				

VERSION CONTROL RECORD

ii

Page

Contents

1	Introduction	1
1.1	Objectives and Scope of Work	1
1.2	Legislative Requirements, Standards and Codes of Practice	1
1.3	Survey Methodology	1
1.4	Survey Limitations	2
2	Surveys Details	3
2.1	Buildings Descriptions	3
2.2	Survey Methodology	3
2.3	Sample Collection and Laboratory Analysis	4
3	Findings	6
3.1	Hazardous Materials Register	6
3.2	Asbestos Containing Materials	6
3.3	Synthetic Mineral Fibre Materials	6
3.4	Polychlorinated Biphenyls	6
3.5	Lead Based Paint	6
3.6	Other Observations	7
4	Recommendations	8
4.1	Asbestos Containing Materials	8
4.1.1	Building Maintenance/ Retention	8
4.1.2	Building Demolition	8
4.2	Synthetic Mineral Fibre Materials	9
4.3	Polychlorinated Biphenyls	9
4.4	Lead Based Paint	9
5	References	10
6	Limitations	11
6.1	General Limitations regarding Sampling	11
6.2	User Reliance	11

List of Figures

Figure 1:	Part of Parcel 14 (containing structure	es)
rigalo I.	i alt of i aloof i i (oontaining of aotait	50,

List of Appendices

Appendix A:	Photographs
Appendix B:	Hazardous Materials Register
Appendix C:	Laboratory Certificates

iii

Acronyms and Abbreviations

- ACM: Asbestos containing material
- EMP: Employment Parcel
- LBP: Lead based paint
- PCB: Polychlorinated biphenyl compounds
- SMF: Synthetic mineral fibre

1 Introduction

ENVIRON Australia Pty Ltd (ENVIRON) was engaged by Hydro Aluminium Kurri Kurri Pty Ltd (Hydro) to undertake a hazardous materials audit of the buildings located within Parcel 14, within the buffer zone of the former Hydro Aluminium smelter at Kurri Kurri, NSW.

1.1 Objectives and Scope of Work

The survey was undertaken in order for Hydro Aluminium to effectively manage its compliance obligations with respect to asbestos containing materials (ACM), and to identify and manage risks associated with other hazardous materials potentially present in the buildings to an acceptable level.

Hazardous materials other than ACM were polychlorinated biphenyl compounds (PCB), synthetic mineral fibre (SMF), and lead based paint (LBP).

1.2 Legislative Requirements, Standards and Codes of Practice

In NSW, management of asbestos is governed by the following principal legislation and guidance documents:

- Workplace Health and Safety Regulation 2011 (Part 8)
- Code of Practice for the Management and Control of Asbestos in Workplace (NOHSC, 2005a).
- NOHSC Code of Practice for the Safe Removal of Asbestos 2nd Edition (NOHSC, 2005b).

The following codes of practice and standards apply to the other hazardous materials:

- National Code of Practice for the Safe Use of Synthetic Mineral Fibres (NOHSC, 1990).
- Identification of PCB-Containing Capacitors (ANZECC, 1997).
- Australian Standard AS4361.2 Guide to Lead Paint Management Residential and Commercial Buildings.

1.3 Survey Methodology

The hazardous materials survey was undertaken of structures within Parcel 14.

The survey methodology involved the following:

- An inspection of the accessible sections of the outside and inside of all buildings, as well as any accessible power boxes on power poles within the properties.
- Wherever possible, confirmation of the presence or absence of asbestos in a material was via identification in the field.
- Where the presence or absence of asbestos could not be determined in the field, a sample was taken for laboratory analysis.
- The age of the building and the condition of any fluorescent lights was observed and the likelihood for them to contain PCB noted.
- Visual confirmation of SMF.
- The age of the building and the condition of the paint was observed and the likelihood of lead-based paint being present noted.

1.4 Survey Limitations

Any restrictions or limitations on the survey, such as access not gained to areas or areas not accessible due to safety restrictions, are outlined in Section 2.2 of this report. The reader is also referred to ENIVRON's limitations in Appendix Section 6.

2 Surveys Details

2.1 Buildings Descriptions

The hazardous materials survey was undertaken on 10 June 2014 and 26 March 2015 by ENVIRON Senior Environmental Scientist Shaun Taylor. At the time of preparation of this report the interior of the house at the property could not be accessed so only the exterior was examined.

Table 1 describes the following:

- The building type (such as residential home, shed, garage).
- Main construction materials used in construction of the building.
- An estimate as to whether the structure was build prior to 1990 (1990 is commonly regarded as a 'cut-off date' for asbestos in construction materials. It is also a good indicator as to the likelihood of PCBs being used in fluorescent lighting capacitors).
- Any areas not accessible within the building.

A total of two buildings within one property were inspected for hazardous materials. Mobile equipment (such as vehicles and caravans) was not inspected.

2.2 Survey Methodology

The methodology undertaken for the survey is described as follows.

Develop Project OHS Plan, and Survey Protocol and Survey Templates

A Health and Safety Plan was developed for the contamination and hazardous materials investigations within the buffer zone in advance of the works commencing and endorsed internally.

A hazardous materials protocol and data collection template specific to the project was developed, to ensure a consistent approach to the surveys and data collection.

Project Scheduling and Communications

Tenants' contact details were provided by Hydro and a scheduled date for the survey agreed to between ENVIRON and the tenant. Each tenant was notified of the survey program and process by Hydro (via the real estate agent) in advance. Prior to the scheduled date, ENVIRON contacted the tenant to confirm the date, arrival time, and any likely access issues or restricted areas.

Conduct Hazardous Materials Survey

The survey included a thorough visual inspection of all accessible areas of the buildings and structures, and collection of representative samples for the purpose of analytical confirmation where materials could not be visually identified.

Data Collection

Survey data collected included the type, form, location, extent/ quantity, condition and accessibility of ACM and synthetic mineral fibre products, the likely presence of PCB in

fluorescent light fittings, and the likely presence of LBP. Photographs were also taken of the observed potential/ confirmed hazardous materials.

In addition, any other observations of concern (such as potential for contamination in the surrounding area) were documented.

Sample Analysis

Any asbestos sample analysis was undertaken using polarised light microscopy, in conjunction with dispersion staining techniques. Where possible, the presence of asbestos (but not the type of asbestos) was confirmed in the field.

SMF was visually identified during the surveys. The presence of lead in paint and PCB in the capacitor to fluorescent lights was assumed based on the likely age of the building and the condition of painted surfaces and the lights.

Areas not Accessed

During the audit, all areas of the buildings and structures within the area which were both readily accessible and safe to access were inspected. Where access was not available to areas which could potentially hazardous materials, the locations and the reasons inaccessibility were noted. Any areas not accessed are documented within Section 2 of this report.

Other Observations

In addition to the survey of structures within the property, the surveyor also noted potential issues of concern, such as:

- Evidence of subsurface hazardous materials (such as ACM service conduits).
- Evidence of hazardous material fragments/ waste in soils or elsewhere within the property.
- Other potential issues of concern (such as possible soil contamination).

2.3 Sample Collection and Laboratory Analysis

During the survey one sample was collected and analysed for the presence of asbestos (all forms) at a NATA accredited asbestos identification facility. The results of the analysis is summarised in Section 3, with the supporting laboratory analytical certificate contained in Appendix C.

The remaining ACM were confirmed through visual confirmation of the presence of asbestos (but not the type of asbestos) in the field.

Table 1: Hazardous Materials Audit Building Details				
Property	Building Type/s	Main Construction Materials	Estimated Pre or Post 1990 construction	Any Inaccessible Areas
		Parcel 14		
22 Bowditch Avenue	House	Weatherboard Timber Brick Cement sheeting Concrete Corrugated iron	Pre-1990	Wall and ceiling cavity
	Garage	Steel Corrugated iron Concrete	Pre-1990	N/A

3 Findings

3.1 Hazardous Materials Register

The results of the survey are presented in Appendix B.

The following provides a summary of the hazardous materials identified. Representative photographs of the identified hazardous materials are provided in Appendix A.

3.2 Asbestos Containing Materials

Asbestos cement sheeting was found in the following locations:

- The southern wall of and upper panels to the carport at the front of the house.
- Gable end and eaves to the north side of the house.
- Panelling around the base of the verandah.
- Underside of the verandah cover.
- Infill panels between the house and the ground on the west side of the house.
- Fragments under the northwestern corner of the house.
- Backing boards to power boxes servicing the house and the garage.
- The majority of internal walls and the ceiling.

One sample was collected for laboratory analysis from sheeting used around the base of the verandah. The results showed that the sheeting did not contain asbestos. One sample was taken of the internal wall lining in the living area. The results showed that the sheeting did contain asbestos. The laboratory certificates are presented in Appendix C.

3.3 Synthetic Mineral Fibre Materials

There is potential that SMF was used as insulation to wall and ceiling cavities in the house.

3.4 Polychlorinated Biphenyls

There is potential that fluorescent light fittings observed within and to the exterior of the house and in the garage have capacitors that contain PCBs.

3.5 Lead Based Paint

Due to the age of the house it is likely that lead based paint has been used. Most of this is on weatherboards while some of it may be present on the ACM sheeting.

AS4361.2 Guide to Lead Paint Management – Residential and Commercial Buildings notes that lead based paint was used mainly on exterior surfaces and to a lesser extent on interior doors and architraves, especially in undercoats and primers where concentrations of up to 20% lead were commonly used. It also notes that while paints produced for Australian dwellings from the 1970s onwards (and therefore applicable for this property) contain less than 1% lead, it is possible that industrial paints, having higher concentrations of lead, may have been applied to housing and commercial buildings.

3.6 Other Observations

Since the initial inspection on 10 June 2014 the tenant of 22 Bowditch Avenue had vacated. At the subsequent inspection 26 March 2015 much of the material in the yard that was of potential concern appeared to have been removed.

A caravan and other miscellaneous items still remained.

4 **Recommendations**

The following are general management measures to be implemented for hazardous materials management, either in the event that the building is to be retained and occupied, or the building is to be demolished.

4.1 Asbestos Containing Materials

4.1.1 Building Maintenance/ Retention

- The asbestos containing materials identified on site generally do not pose a significant health risk and may remain in situ if they remain undamaged and sealed (by paint).
- Damaged ACM should be removed and replace. Where damage is minor (such as minor cracks, drilled holes or worn edges to sections of the walls and ceilings within the former dairy shed and to laundry walls to the house) any cracks should be sealed with a PVA glue and painted (no sanding of materials prior to painting) as a temporary measure. However it is recommended that a program for removal of these materials also be developed and implemented.
- A copy of the asbestos and hazardous materials register is to be kept at the Hydro Aluminium Smelter and made available to employees or contractors undertaking work on the buildings.
- No sanding, blasting, drilling, or similar abrasive activity is to be undertaken on any identified ACMs.
- The National Code of Practice for the Management and Control of Asbestos in Workplaces recommends, and the Work Health and Safety Regulation 2011 requires, labelling of any identified ACM in the workplace where practicable.

While such labelling is not required in a rental property under the regulation (and notification of tenants on the presence of asbestos is not required by the NSW Department of Fair Trading), Hydro should consider labelling the ACM, or advising tenants of the presence of ACM, particularly those in locations where it is easily accessible and more likely to be damaged or impacted (such as the walls).

• If installed, periodically reinspect asbestos warning labels to ensure they are legible and in good condition.

4.1.2 Building Demolition

- If demolition or refurbishment works are to be undertaken, remove identified ACMs under controlled conditions using an appropriately licensed removal contractor.
- Any asbestos work is carried out in accordance with the Code of Practice for the Management and Control of Asbestos in the Workplace [NOHSC: 2018 (2005)].
- Appropriately licensed removalists are to be used for any planned removal, and that any removal works are undertaken in accordance with the NOHSC Code of Practice for the Safe Removal of Asbestos 2nd Edition [NOHSC:2002(2005)].

Page 9

4.2 Synthetic Mineral Fibre Materials

- Apply caution when entering ceiling voids and ensure contractors or persons entering ceiling voids or performing work on synthetic mineral fibre materials wear appropriate PPE, particularly if they have breathing disorders such as asthma.
- Remove any SMF debris as part of routine site housekeeping.
- Ensure contractors or persons performing work on SMF materials adhere to the guidelines outlined in the *National Code of Practice for Synthetic Mineral Fibres* [NOHSC 1004 (1990)], May 1990; and the *Industry code of Practice for the Safe Use of Glass Wool and Rock Wool Insulation Products, April, 2003.*

4.3 Polychlorinated Biphenyls

- Undamaged capacitors (containing PCBs) are unlikely to pose a health risk. Therefore they are unlikely to pose a risk if they remain in-situ.
- In the event that the light fittings are to be removed, the presence of PCB should be confirmed.
- If it is confirmed that the capacitors contain PCBs, the requirements of the *Identification Of PCB-Containing Capacitors* should be implemented for removal, temporary storage, transportation and disposal.

4.4 Lead Based Paint

- The vast majority of the interior paints (which could potentially be LBP) were applied to ACM. Therefore:
 - In the event that the building is to be demolished, these materials would be managed in accordance with Section 4.1.2 as asbestos containing materials. These management procedures are considered appropriate for LBP.
 - If the building is to be retained and surfaces repainted, no abrasion (mechanical or manual) should be applied to these surfaces. This is required to avoid both the generation of airborne asbestos fibres and potentially lead bearing particles.
- Abrasion should not be used on any of the remaining paint on non-asbestos containing material surfaces to avoid the potential generation of lead bearing particles without previously testing to confirm that LBP are absent.
- In the event that the building is demolished, the PPE to be worn when managing ACM and SMF would appropriately protect demolition personnel from LBP.

5 References

- Australian and New Zealand Council Environment Conservation Council (ANZECC). 1997. "Identification Of PCB-Containing Capacitors".
- National Occupational Health and Safety Council. (NOHSC). 1990. "National Code of Practice for the Safe Use of Synthetic Mineral Fibres".
- National Occupational Health and Safety Council. (NOHSC). 2005a. "Code of Practice for the Management and Control of Asbestos in Workplace.
- National Occupational Health and Safety Council. (NOHSC). 2005b. "Code of Practice for the Safe Removal of Asbestos 2nd Edition".
- Standards Australia. 1998. "AS4361.2 Guide to Lead Paint Management Residential and Commercial Buildings"

6 Limitations

ENVIRON Australia prepared this report in accordance with the scope of work as outlined in our proposal to Hydro Aluminium Kurri Kurri Pty Limited dated 18 September 2013 and in accordance with our understanding and interpretation of current regulatory standards.

A representative program of sampling and laboratory analyses was undertaken as part of this investigation, based on past and present known uses of the site. While every care has been taken, concentrations of contaminants measured may not be representative of conditions between the locations sampled and investigated. We cannot therefore preclude the presence of materials that may be hazardous.

Site conditions may change over time. This report is based on conditions encountered at the site at the time of the report and ENVIRON disclaims responsibility for any changes that may have occurred after this time.

The conclusions presented in this report represent ENVIRON's professional judgement based on information made available during the course of this assignment and are true and correct to the best of ENVIRON's knowledge as at the date of the assessment.

This report does not purport to give legal advice. This advice can only be given by qualified legal advisors.

6.1 General Limitations regarding Sampling

It is not always possible to locate all hazardous materials in the course of an inspection, due to factors such as:

- Restrictions on access to internal construction components and other inaccessible parts of structures.
- Restrictions to access due to presence of tenant's belongings.
- The need to avoid damage in occupied buildings, such as when attempting to inspect behind wall panels or under carpets.
- Minimising inconvenience when premises are occupied or are in use whilst an inspection is being conducted.
- The availability of building/plant construction plans.

6.2 User Reliance

This report has been prepared exclusively for Hydro Aluminium Kurri Kurri Pty Ltd and may not be relied upon by any other person or entity without ENVIRON's express written permission.

Figures

Hydro Aluminium Kurri Kurri Pty Limited April 2015

Figure 1. Part of Parcel 14 (containing structures)

AS130348

Appendix A

Photographs

Photo 1: Part of the corrugated AC sheeting southern wall to the carport on the western side of the house (sheets on the northern side of the carport appeared to be have been removed). Also note the ACM panelling above the corrugated sheeting

Photo 2: Part of the ACM panelling around the top of the carport.

Photo 3: Fluorescent light beneath the carport.

Photo 4: Gable end and eaves to the north side of the house

Photo 5: A section of the panels that are around the base of the verandah on the back and southern side of the house. Laboratory analysis concluded these are not ACM.

Photo 6: A section of the ACM sheeting used on the underside to the verandah on the back and southern side of the house

Photo 7: Fluorescent light attached to the rear wall of the house

Photo 8: Arrows pointing to some of the fragments of corrugated ACM sheeting under the northwestern corner of the house

Photo 9: One of the sections of ACM sheeting used as infill panels between the house and the ground on the western side of the house

Photo 10: The garage which contains four fluorescent lights that appeared to be of an age that could contain PCB-containing capacitors (note that the contents of the garage have since been removed).

Photo 11: The electrical power box in the garage with a zelemite backing board.

Photo 12: The electrical power box to the house with a zelemite backing board.

ENVIRON

Photo 13: ACM walls in living area.

Photo 14: Section of the ACM wall in the kitchen area.

Photo 15: Section of the ACM lined ceiling in the main section of the house.

Photo 16: Fluorescent light fitting in the living area that potentially includes a PCB-containing capacitor.

Photo 17: Fluorescent light fitting in to the kitchen wall that potentially includes a PCB-containing capacitor.

Photo 18: Fluorescent light fitting in to the laundry that potentially includes a PCB-containing capacitor.

Appendix B

Hazardous Materials Register

Glossary of Terms and Abbreviations Used in Registers

The following provides an explanation of terms and abbreviations used in the registers.

Location	The location within the building (e.g bathroom) and the use of the material (e.g. floor covering, soffit lining, pipe lagging)	
ACM	Asbestos containing material	
Bonded	Refers to ACM with its fibres firmly bound within the host media.	
AC sheeting	Asbestos cement sheeting	
Condition	Refers to the physical state or condition of the material in accordance with the following:	
	Good – material shows no, or very minor damage and/or deterioration	
	Fair – material shows signs of minor damage and/or deterioration	
	• Poor – material shows sign of significant damaged and/or deterioration or the material is partly or wholly unserviceable for its intended use.	
Description	Description of the material identified e.g. vinyl tile, fibre cement sheeting etc.	
Friable	ACM that may be crumbled pulverised or reduced to powder by hand pressure.	
LBP	Lead based paint:	
Result	Refers to result of ACM or LBP analysis.	
	• For asbestos, this is the type identified during laboratory analysis. The three main commercial asbestos types found in Australia area: chrysotile (CH-white), amosite (A-brown or grey), and crocidolite (C-blue).	
	NAD means no asbestos was detected during laboratory analysis.	
	• Materials shown as 'Refer to' have not been sampled but visually appear the same as other material previously sampled.	
	• 'Assumed' refers to those materials not sampled (e.g. for safety reasons or restricted access) and which are not similar to previously sampled materials; or refers to paint that is assumed to be LBP due to building age and paint condition.	
	• 'Field' means ACM where asbestos fibres identified in field but the type of asbestos no confirmed.	
	• 'Potential' refers to fluorescent lights where it is assumed that PCBs are present due to their apparent age.	
РСВ	Polychlorinated Biphenyls	
Risk	Refers to the level of risk posed by the material based on its condition. friability, accessibility and other factors such as exposure to disturbance. The levels of risk adopted for the survey are Urgent (U), High (H), Medium (M) and low (L) as defined in Appendix C of this report.	
SMF	Synthetic mineral fibre	

			Type of Haz								
Date of Audit	Parcel Property Address	Building Name/ No	Mat	Form of Haz Mat	Location	Description/ Condition	Accessibility	Est. Quantity	Photo Ref	Sample No.	Result
10/06/2014	14 22 Bowditch Avenue	House	ACM	Sheet (Corrugated)	Southern wall to carport to house	Significant damage, painted but worn and mouldy	Ground - 3m above ground level	4m2		1 Field	ACM
10/06/2014	14 22 Bowditch Avenue	House	ACM	Sheeting	Upper panel to west, north and south sides of carport	Edge damage, painted but mouldy	3m above ground level	8m2	1 and 2	Field	ACM
10/06/2014	14 22 Bowditch Avenue	House	РСВ	Capacitor	Fluorescent light to underside of carport roof	Rusted and damaged	3m above ground level	1		3 Assumed	РСВ
10/06/2014	14 22 Bowditch Avenue	House	ACM	Sheeting	Gable end to north side of house	Paint peeling, no damage	5m above ground level	3m2		4 Field	ACM
10/06/2014	14 22 Bowditch Avenue	House	ACM	Sheeting	Eaves to gable end of house	Good, painted, no damage	5m above ground level	1m2		4 Field	ACM
10/06/2014	14 22 Bowditch Avenue	House	N/A	Sheeting	Infill panels around the base of the back and southern side verandah	Fair: painted, some damage	.6m above ground level	10m2		5 LP14-ACM-01	NAD
10/06/2014	14 22 Bowditch Avenue	House	ACM	Sheeting	Underside of back and southern side verandah cover (including eaves and lip)	Painted, edges covered by strips, some minor damage	2.4m above ground level	100m2		6 Field	ACM
10/06/2014	14 22 Bowditch Avenue	House	PCB	Capacitor	Fluorescent light attached to back wall under back verandah	Rusted and damaged	2m above ground level	1		7 Assumed	PCB
10/06/2014	14 22 Bowditch Avenue	House	ACM	Sheet (Corrugated)	Under house, northwestern corner	Fragments of varving sizes, appears similar to that used on the carport	At ground level	1m2 (apparent)		8 Field	ACM
10/06/2014	14 22 Bowditch Avenue	House	ACM	Sheeting	In sections as infill between ground and base of house at front (west) side of house	Painted but damaged	At ground level	2m2		9 Field	ACM
10/06/2014	14 22 Bowditch Avenue	House	РСВ	Capacitor	Fluorescent lights in open corrugated iron garage	Older with minor damage (1 partially fallen)	3.5m above ground level	4	1	0 Assumed	PCB
10/06/2014	14 22 Bowditch Avenue	House	ACM	Zelemite	Backing board to power box in open garage	Fair, drilled holes	1.5m above ground level	1m2	1	1 Field	ACM
10/06/2014	14 22 Bowditch Avenue	House	ACM	Zelemite	Backing board to power box on northern wall	Fair, drilled holes	1.5m above ground level	1m2	1	2 Field	ACM
26/03/2015	14 22 Bowditch Avenue	House	ACM	Sheeting	Walls to all rooms excluding North Room (neclosed verandah), southwest bedroom and timber veneer in living area	Painted, generally in faire condition, there is some damage and holes. Timber strips to uppoer sections. none to lower sections	Ground - 4m above ground level	500m2	13.8.1	4 22B-ACM-01	ACM
26/03/2015	14 22 Bowditch Avenue	House	ACM	Sheeting	High ceiling to main section of building	Good, painted with edge strips	4m above ground level	200m2		5 Refer to 22B-ACM-01	ACM
26/03/2015	14 22 Bowditch Avenue	House	РСВ	Capacitor	Fluorescent light to ceiling in living area	Double 1.2m in length in living area	4m above ground level		1 1	6 Assumed	РСВ
							1.2m above ground level (kitchen)				
26/03/2015	14 22 Bowditch Avenue	House	PCB	Capacitor	Fluorescent lights in three locations	Asingle 60cm on wall in kitchen and in laundry	and 3m above ground level (laundry)		2 17 & 1	8 Assumed	РСВ

Appendix C

Laboratory Certificates

Work Order

Client

Contact

Address

CERTIFICATE OF ANALYSIS * EN1402090 Page : 1 of 3 * ENVIRON AUSTRALIA PTY LTD Laboratory : Environmental Division Newcastle : FIONA ROBINSON Contact : Peter Keyte : PO BOX 564 Address : 5/585 Maitland Road Mayfield West NSW Australia 2304

	MAITLAND NSW, AUSTRALIA 2320		
E-mail	: frobinson@environcorp.com.au	E-mail	: peter.keyte@als.com.au
Telephone	: +61 02 49344354	Telephone	: 61-2-4968-9433
Facsimile	: +61 02 49344359	Facsimile	: +61-2-4968 0349
Project	: AS130348 - HYDRO ALUMIUM BUFFER ZONE	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Order number	:		
C-O-C number	:	Date Samples Received	: 18-JUN-2014
Sampler	: SHAUN TAYLOR	Issue Date	: 25-JUN-2014
Site	:		
		No. of samples received	: 1
Quote number	: SY/578/14	No. of samples analysed	: 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Descriptive Results

ΝΑΤΑ	NATA Accredited Laboratory 825 Accredited for compliance with	Signatories This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.						
	ISO/IEC 17025.	Signatories	Position	Accreditation Category				
		Christopher Owler	Team Leader - Asbestos	Newcastle - Asbestos				
WORLD RECOGNISED ACCREDITATION								

Address 5/585 Maitland Road Mayfield West NSW Australia 2304 PHONE +61 2 4014 2500 Facsimile +61 2 4968 0349 Environmental Division Newcastle ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting ^ = This result is computed from individual analyte detections at or above the level of reporting

- EA200 Legend
- EA200 'Am' Amosite (brown asbestos)
- EA200 'Ch' Chrysotile (white asbestos)
- EA200 'Cr' Crocidolite (blue asbestos)
- EA200 'Trace' Asbestos fibres detected by trace analysis per AS4964. The result can be interpreted that the sample contains detectable 'respirable' asbestos fibres
- EA200: 'UMF' Unknown Mineral Fibres. "-" indicates fibres detected may or may not be asbestos fibres. Confirmation by alternative techniques is recommended.
- EA200: Asbestos Identification Samples were analysed by Polarised Light Microscopy including dispersion staining.
- EA200: Negative results for vinyl tiles should be confirmed by an independent analytical technique.

Analytical Results

Sub-Matrix: SOLID (Matrix: SOIL) Client sample ID			LP14-ACM-01	 	 	
	ient sampli	ng date / time	10-JUN-2014 15:00	 	 	
Compound	Compound CAS Number LOR Unit		EN1402090-001	 	 	
EA200: AS 4964 - 2004 Identification of A	sbestos in bulk	samples				
Asbestos Detected	1332-21-4	0.1	g/kg	No	 	
Asbestos Type	1332-21-4	-		-	 	
Sample weight (dry)		0.01	g	0.84	 	
APPROVED IDENTIFIER:		-		C.OWLER	 	

Analytical Results

```
Descriptive Results
```

Sub-Matrix: SOLID

Method: Compound	Client sample ID - Client sampling date / time	Analytical Results				
EA200: AS 4964 - 2004 Identification of Asbestos in bulk samples						
EA200: Description	LP14-ACM-01 - 10-JUN-2014 15:00	Several pieces of organic fibre board approximately 10 x 10 x 2mm				

CERTIFICATE OF ANALYSIS

Work Order	EN1511008	Page	: 1 of 2
Client	: ENVIRON AUSTRALIA PTY LTD	Laboratory	Environmental Division Newcastle
Contact	: FIONA ROBINSON	Contact	: Peter Keyte
Address	Eastpoint Complex Suite 19B, Level 2 50 Glebe Road PO Box 435 THE JUNCTION NSW 2291	Address	: 5/585 Maitland Road Mayfield West NSW Australia 2304
E-mail	: frobinson@environcorp.com.au	E-mail	: peter.keyte@alsglobal.com
Telephone	: +61 02 49344354	Telephone	: +61 2 4014 2500
Facsimile	: +61 02 49344359	Facsimile	: +61 2 4967 7382
Project	: AS130328 - Hydro Alumium Buffer Zone	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Order number	:	Date Samples Received	26-Mar-2015 13:12
C-O-C number	:	Date Analysis Commenced	: 30-Mar-2015
Sampler	: SHAUN TAYLOR	Issue Date	: 30-Mar-2015 19:50
Site	:		
		No. of samples received	: 4
Quote number	:	No. of samples analysed	: 4

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

Accredited for compliance with

ISO/IEC 17025.

- General Comments
- Analytical Results
- Descriptive Results

NATA Accredited Laboratory 825 Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Christopher Owler	Team Leader - Asbestos	Newcastle - Asbestos

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

Analytical Results

Sub-Matrix: SOLID (Matrix: SOLID)		Clie	ent sample ID	2D/ACM/1	2D/ACM/2	8D/ACM/1	22B/ACM/01	
	Cl	ient sampliı	ng date / time	26-Mar-2015 12:00	26-Mar-2015 12:00	26-Mar-2015 12:00	26-Mar-2015 12:00	
Compound	CAS Number LOR Unit		EN1511008-001	EN1511008-002	EN1511008-003	EN1511008-004		
				Result	Result	Result	Result	Result
EA200: AS 4964 - 2004 Identification of	of Asbestos in bulk	samples						
Asbestos Detected	1332-21-4	0.1	g/kg	Yes	Yes	Yes	Yes	
Asbestos Type	1332-21-4	-		Ch	Ch	Ch	Ch	
Sample weight (dry)		0.01	g	1.49	0.56	0.64	6.30	
APPROVED IDENTIFIER:		-		C.OWLER	C.OWLER	C.OWLER	C.OWLER	

Analytical Results

Descriptive Results

Sub-Matrix: SOLID

Method: Compound	Client sample ID - Client sampling date / time	Analytical Results						
EA200: AS 4964 - 2004 Identification of Asbestos in bulk samples								
EA200: Description	2D/ACM/1 - 26-Mar-2015 12:00:00	Several pieces of friable asbestos fibre board approximately 20 x 20 x 4mm						
EA200: Description	2D/ACM/2 - 26-Mar-2015 12:00:00	Several pieces of friable asbestos fibre board approximately 20 x 5 x 4mm						
EA200: Description	8D/ACM/1 - 26-Mar-2015 12:00:00	Several pieces of friable asbestos fibre board approximately 10 x 10 x 4mm						
EA200: Description	22B/ACM/01 - 26-Mar-2015 12:00:00	One piece of friable asbestos cement sheeting approximately 40 x 35 x 4mm						

			Type of Haz								
Date of Audit	Parcel Property Address	Building Name/ No	Mat	Form of Haz Mat	Location	Description/ Condition	Accessibility	Est. Quantity	Photo Ref	Sample No.	Result
10/06/2014	14 22 Bowditch Avenue	House	ACM	Sheet (Corrugated)	Southern wall to carport to house	Significant damage, painted but worn and mouldy	Ground - 3m above ground level	4m2		1 Field	ACM
10/06/2014	14 22 Bowditch Avenue	House	ACM	Sheeting	Upper panel to west, north and south sides of carport	Edge damage, painted but mouldy	3m above ground level	8m2	1 and 2	Field	ACM
10/06/2014	14 22 Bowditch Avenue	House	РСВ	Capacitor	Fluorescent light to underside of carport roof	Rusted and damaged	3m above ground level	1		3 Assumed	РСВ
10/06/2014	14 22 Bowditch Avenue	House	ACM	Sheeting	Gable end to north side of house	Paint peeling, no damage	5m above ground level	3m2		4 Field	ACM
10/06/2014	14 22 Bowditch Avenue	House	ACM	Sheeting	Eaves to gable end of house	Good, painted, no damage	5m above ground level	1m2		4 Field	ACM
10/06/2014	14 22 Bowditch Avenue	House	N/A	Sheeting	Infill panels around the base of the back and southern side verandah	Fair: painted, some damage	.6m above ground level	10m2		5 LP14-ACM-01	NAD
10/06/2014	14 22 Bowditch Avenue	House	ACM	Sheeting	Underside of back and southern side verandah cover (including eaves and lip)	Painted, edges covered by strips, some minor damage	2.4m above ground level	100m2		6 Field	ACM
10/06/2014	14 22 Bowditch Avenue	House	PCB	Capacitor	Fluorescent light attached to back wall under back verandah	Rusted and damaged	2m above ground level	1		7 Assumed	PCB
10/06/2014	14 22 Bowditch Avenue	House	ACM	Sheet (Corrugated)	Under house, northwestern corner	Fragments of varving sizes, appears similar to that used on the carport	At ground level	1m2 (apparent)		8 Field	ACM
10/06/2014	14 22 Bowditch Avenue	House	ACM	Sheeting	In sections as infill between ground and base of house at front (west) side of house	Painted but damaged	At ground level	2m2		9 Field	ACM
10/06/2014	14 22 Bowditch Avenue	House	РСВ	Capacitor	Fluorescent lights in open corrugated iron garage	Older with minor damage (1 partially fallen)	3.5m above ground level	4	1	0 Assumed	PCB
10/06/2014	14 22 Bowditch Avenue	House	ACM	Zelemite	Backing board to power box in open garage	Fair, drilled holes	1.5m above ground level	1m2	1	1 Field	ACM
10/06/2014	14 22 Bowditch Avenue	House	ACM	Zelemite	Backing board to power box on northern wall	Fair, drilled holes	1.5m above ground level	1m2	1	2 Field	ACM
26/03/2015	14 22 Bowditch Avenue	House	ACM	Sheeting	Walls to all rooms excluding North Room (neclosed verandah), southwest bedroom and timber veneer in living area	Painted, generally in faire condition, there is some damage and holes. Timber strips to uppoer sections. none to lower sections	Ground - 4m above ground level	500m2	13.8.1	4 22B-ACM-01	ACM
26/03/2015	14 22 Bowditch Avenue	House	ACM	Sheeting	High ceiling to main section of building	Good, painted with edge strips	4m above ground level	200m2		5 Refer to 22B-ACM-01	ACM
26/03/2015	14 22 Bowditch Avenue	House	PCB	Capacitor	Fluorescent light to ceiling in living area	Double 1.2m in length in living area	4m above ground level		1 1	6 Assumed	РСВ
							1.2m above ground level (kitchen)				
26/03/2015	14 22 Bowditch Avenue	House	PCB	Capacitor	Fluorescent lights in three locations	Asingle 60cm on wall in kitchen and in laundry	and 3m above ground level (laundry)		2 17 & 1	8 Assumed	РСВ